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ESTIMATION OF THE NATURAL ROLL FREQUENCY
OF A SHIP IN A CONFUSED SEA

t=1

INTRODUCTION

Background

Motivation for this study derives from use of the natural roll frequency as a measure
of ship stability, a matter of concern to masters, ship owners, and insurers of merchant
vessels. This use of the natural period of roll was proposed by Norrby [1]. The classic
technique for measuring the natural roll period has been to excite the ship in roll by one
means or another and to time the decaying oscillations in still water. At times such a
test is not feasible, or conditions of loading may be changed while the ship is under way,
requiring the stability to be judged at sea. Here the complexity increases because the roll
behavior is no longer deterministic, with the ship being driven in roll by a random sea.
This point was raised in the discussion of Norrby's paper where it was argued that the
rolling period used as a measure of stability should be the natural period of roll of the
ship, and not simply the period of encounter* with the sea. In spite of qualitative state-
ments made by a number of workers, and cited by Norrby in his reply, to the effect that
a ship normally rolls in her natural period, a ship may be driven at the frequency of a
regular wave. Recognition of this led Vossers [2] to suggest that the roll period for judg-
ing stability be measured in a relatively confused sea. However, this still is not sufficient
because the master of a ship may not always find himself in a confused sea at a time when
the stability must be checked. Nor will the general confusion of the sea always suffice
because the lack of any predominant swell or direction to the sea cannot ensure that there
will be energy in the sea capable of exciting the ship into resonance.

Since the roll period reflects the character of the sea as well as the resonance properties
of the ship and since the most definitive description of the sea is in terms of its spectrum,
it appears more useful to consider the roll spectrum in lieu of the roll history, the roll spec-
trum being the product of the power transfer function of the ship in the roll plane and the
appropriate spectrum of the sea. The roll behavior of the ship at sea can then be described
in terms of a natural roll frequency and the distribution of its estimates with, perhaps, the
sea state or local windspeed as a parameter. Until now this has not been done.

Statement of the Problem

The problem, then, is threefold: (a) to define an estimator of the natural roll frequency
of a ship in terms of the behavior observable in a confused sea; (b) to develop, using the
techniques of spectral analysis, an algorithm for the optimum processing (optimum in the

*Definitions of terms commonly used in naval architecture and oceanography are given in Appendix A.

Manuscript submitted September 17,1976.
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sense of minimum variance in the estimates of the natural roll frequency) of a finite length
of roll history; and (c) to find the sampling distribution of the roll-frequency estimates
thus determined.

Related Research

A number of studies on ship roll motion have been published since the appearance in
1861 of the classic work of Froude [3], who demonstrated so impressively the principle
underlying the motion of a ship in waves: momentary equilibrium obtains when the vertical
axis of the ship is normal to the wave surface. Kriloff [4] made the identification between
the free (natural) and forced oscillations of a ship and indicated that the irregularity of the
sea would continually excite free oscillations. During the next 50 years improvements vvere
made in the theory, culminating in the thorough and systematic treatment by Weinblum
and St. Denis [5]. A major shortcoming remained, however, in the assumption of regular
waves until St. Denis and Pierson [6] added the statistical description of the sea.

The application of spectral analysis to ship roll histories was foreshadowed by the
work of Barber [7] and Williams [8], who found spectra for individual roll records. Barber,
who was endeavoring to deduce the frequency spectrum of the sea from a frequency analy-
sis of the rolling and pitching of the ship, noted that the speed and direction of travel of
the ship had no influence on the main period of the roll. A major contribution was made
by Cartwright and Rydill [9], who, using directional frequency spectra measured by a ship-
borne wave recorder, obtained excellent agreement between predicted and measured roll
spectra. The merit in Cartwright and Rydill's paper, as pointed out by Palmer in the dis-
cussion, lay in the authors' having confirmed the applicability for ship roll motion of the
principle of linear superposition. A review of the techniques of spectral analysis and a
demonstration of their application to seakeeping was made by Marks [10]. Baitis and
Wermter [11] subsequently employed these techniques to obtain measurements of the
power spectra of ship motions.

Treatment of the natural roll period has been somewhat intuitive. A number of
workers (e.g., [2], [8], [9]) have stated that the natural period predominates for rolling.
Norrby [1] suggested that the natural roll period be determined as the average of a num-
ber of rolling tests where the ship is caused to roll in still water and the time to swing
from, say, starboard to port and back to starboard is noted by stopwatch. Histograms
for roll periods were obtained by Langmaack [12], Williams [8], and Norrby and Engvall
[13]. The period was variously defined as the time interval between alternate zero crossings,
twice the time between adjacent maxima and minima, and the time between successive minima.
With normal probability curves fitted to the data, standard deviations on the order of 12 to
23% of the mean were obtained by Norrby and Engvall [13] for some 19 rolling tests.
The mean roll period at sea was observed to be within 4.5% of its value for still water.

An empirical correlation between natural roll period and ship size is given by Williams
[8] for British warships, assuming geometrical similarity of form and weight distribution.
A table of roll periods for Japanese merchantmen and warships is given by Tamiya and
Motora [14].
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Approach

The problem of estimating the natural roll frequency from the spectral analysis of
the roll history of a ship driven by a random sea is a special case in the larger area of
system identification. Briefly stated, the modeling, or identification, problem is to find
a mathematical description (model) of a dynamic system when a set of inputs and a set
of outputs are known. The nature of the system may be completely unknown or, as in
the case reported here, because of knowledge of the physics governing the behavior of
the system, the form of the equations may be known and only the coefficients need be
determined.

The classical technique for solving this problem admits of several approaches:

1. The transfer function is plotted directly as the system is excited by a sinusoidal
input of variable frequency.

2. The response of the system to a unit impulse, or unit step function, is measured,
and the Fourier transform of the response or its derivative is taken to obtain the transfer
function.

3. The response of the system to an arbitrary input is measured, and its transform is
found and divided by the transform of the excitation to give the transfer function.

4. Sample spectra are computed from the response to white noise and are averaged
to obtain the squared modulus of the transfer function.

The first approach was taken in experiments using model tanks under carefully con-
trolled conditions by Baitis and Wermter [11]. The third approach was taken by Cart-
wright and Rydill [9] aboard a ship at sea where simultaneous measurements were made
of the ship's roll and of the spectrum of the sea by a shipborne wave recorder.

Although the problem addressed in this study is eased somewhat by requiring that
only one coefficient be determined, the frequency ft, for resisted roll in still water
(assuming the coefficient K is known), it is rendered more difficult because the excita-
tion is not known. The problem of system identification without knowledge of the
input, in even the limited sense treated here, does not appear to have received much
attention. The situation is far from hopeless, however, since our limited knowledge of the
input may be all that is required to obtain the limited information we are seeking about
the system.

One factor that helps considerably is the signal-like character of the roll history, which
will be assumed to be a noise-free measurement. (The quantization noise for the 12-bit
quantization of the output of the two-speed synchro yields a signal-to-noise ratio of about
45 dB and is therefore assumed to be zero.)

The approach taken here is to assume that additive noise is zero, so that we may
write
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r(41;w) = IH(w)j2 r(E;w)

where 17(4);co) is the spectrum of the roll process, H(co) is the transfer function of the
vessel in the roll plane, and rF(O;w) is the spectrum of the driving force. Here co is the
radian frequency of encounter of the vessel moving through the sea, {&I(t)} is the roll-
angle process, and {6(t)} is the wave-normal angle process for those frequency compo-
nents normal to the roll axis. As will be shown later (see pp. 13 - 18), the spectrum of
the driving force is smooth relative to the transfer function, and hence the resonant fre-
quency fo will be biased by an amount depending on the slope of the driving force spec-
trum in the vicinity of resonance. An estimate of the natural roll frequency fCp is then
obtained from a deterministic relation involving the estimated resonant frequency and
the coefficient of roll damping, which normally would have been obtained previously
from rolling tests in still water.

The problem of estimating these spectra from finite lengths of the roll history is
addressed in the section entitled "Spectral Analysis of Ship Roll History" (pp. 18 - 35).
Briefly, we take finite lengths of the roll history, apply a Fourier transform to obtain
a finite set of sample spectra, and then average across the set since the expectation of
the sample spectrum converges in the limit to the process spectrum as the sample length
tends to infinity. Hence we measure

m m

1 Ci(4";w) - IH(W)12 2 Ci(E;w)

i=1 i=1

where Ci(4>;w) is the ith sample roll spectrum and Ci(E);cw) is the ith sample spectrum of
the driving force. The notation is that of Stilwell and Pilon [15] and distinguishes between
the first parameter in the argument as the variable being transformed and the second para-
meter, which is the independent variable, the frequency.

Since the roll history is a stochastic process, the sample roll spectrum is a random
variable and so, therefore, is the roll-frequency estimator fi. The questions that remain
to be answered then are the following:

1. Given a finite length of roll history, what is the algorithm for the optimum (mini-
mum variance) processing of the data?

2. What is the sampling distribution for the roll-frequency estimates?

3. What is the bias in the roll-frequency estimates due to the steepness in the spec-
trum of the driving-force in the vicinity of resonance and that due to the finiteness of
the sample lengths processed?

To answer the first question a parametric analysis is conducted in which the following
parameters are varied: the sample length T, the number m of spectra to be averaged, the
shape of the data window w(t), and the method of averaging. From this it is determined
that the optimum selection of parameters is to make the sample length T equal to the
decorrelation time of the roll record, to make the number m of spectra to be averaged as
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large as possible, to use a rectangular data window w(t), and to average normalized power
spectra computed from noncontiguous portions of the roll record.

To answer the second question, we model the ship by a linear system with an input
of white noise. For resisted rolling in still water, the transfer function of the linear system
is that of the ship in the roll plane. For resisted rolling among waves, the transfer function
of the linear system is the product of the transfer function of the ship in the roll plane
and the square root of the spectrum of the driving force, based on a theoretical model of
the sea due to Pierson and Moskowitz [16]. A transformation is made from the probability
distribution of the spectral estimates for the simulated roll spectrum to the probability dis-
tribution of the estimates of the natural roll frequency. Complementing the theoretical study
are measurements of the natural roll frequency made from 12 hr of roll data from the USS
Providence. Both the model and the measurements indicate that the estimates of the natural
roll frequency are normally distributed.

To answer the third question, we assume that the variance in the spectral estimates is
zero, implying, in principle, that an infinite number of sample spectra are available for
averaging. For the case of simulated still-water rolling, bias arises from convolution of the
spectrum of the roll process with a spectral window of width inversely proportional to the
sample length. For simulated rolling among waves, bias arises from the aforementioned
convolution and from the steepness in the spectrum of the driving force in the vicinity of
resonance. For both types of rolling, the bias in the roll-frequency estimator is tabulated
as a function of sample length. We isolate the bias due to the steepness in the spectrum
of the driving force in the vicinity of resonance by making both assumptions: zero variance
and infinite sample length. In this case bias in the estimator of the natural roll frequency
is tabulated as a function of wind velocity, which, for a fully developed sea, determines
the shape of the spectrum of the driving force. These points are covered in detail on
pp. (30 - 39).

Contributions

Several contributions are made in this study to the problem of ship roll behavior.
These include the following:

1. An operative definition of the estimator of the natural roll frequency in terms of
the observable behavior of a ship in a confused sea

2. Identification of the sources of error in estimating the natural roll frequency from
such behavior

3. Formulation of an algorithm for the optimum processing of a finite length of roll
history (optimum in terms of minimum variance in the estimate of the natural roll frequency)

4. A derivation of the probability distribution for the estimates of the natural roll
frequency

5



WILSON G. REID

5. An assessment of the bias in the estimate of the natural roll frequency due both
to finite sample lengths and to the steepness in the spectrum of the driving force in the
vicinity of resonance

6. Recognition that large-amplitude rolling derives not so much from proximity to
resonance, as has been supposed, but from some other cause (e.g., coherence of the wave
train driving the ship in roll)

7. A correlation between ship-size parameters and the natural roll frequency for a
variety of American naval vessels.

It was pointed out in the review of related research how a more intuitive definition
of the roll period (applied to an aperiodic function) led to distributions with large vari-
ances. The definition of the natural roll frequency is made more precise by assuming
the roll spectrum to be the product of the transfer function in the roll plane and the
appropriate spectrum of the sea that drives the ship in the roll plane as a linear, uncoupled
oscillator. This assumption has been shown to be valid over an important range of values
of roll angle and ship speed. The natural roll frequency, or the frequency of resisted roll
in still water, is defined in terms of the roll-damping coefficient and the resonant frequency,
or peak of the transfer function. The errors in estimating the natural roll frequency from
measurements of the frequency of the peak in the roll spectrum are attributable to (a)
errors in the determination of the roll-damping coefficient, (b) bias in the frequency of
the resonant peak because of the steepness in the spectrum of the driving force in the
vicinity of resonance, and (c) the variance and bias in the spectral estimates resulting
from processing finite lengths of the roll history.

A parametric analysis showed that large-amplitude rolling, contrary to the opinion
expressed by Vossers [2] and Williams [8], derives not so much from proximity to reso-
nance as from other causes (possibly coeherence of the wave train in the sea). This was
discovered by a comparison of averaging techniques. It was argued that if large-amplitude
rolling were the result of proximity to resonance, then the heavier weighting given to
spectra from such portions of the record by averaging unnormalized power spectra would
give a smaller variance in the measurement than would be given by normalized power
spectra. It was found that this was not the case; averaging normalized power spectra
(thereby giving each portion of the record equal weight regardless of the amplitude of
the oscillations) led to the smaller variance.

An optimum processing scheme based on the decorrelation time of the roll history
being examined was deduced. Given a roll record of arbitrary length, the minimum vari-
ance in the measurement of the natural roll frequency is achieved by (a) subdividing the
record into m segments T seconds long, where T is the decorrelation time of the record
(the lag at the first minimum of the envelope of the autocorrelation function); (b) adding
zeros to achieve the desired fineness in frequency (an interpolation method); (c) trans-
forming to obtain the power spectra; (d) normalizing the power spectra to unity total
power; (e) averaging the normalized power spectra; and (f) locating the global maximum
in the magnitude of the resulting spectrum. The variance can be further reduced if, instead
of subdividing a continuous record into m segments, the m segments are taken from non-
contiguous portions of the roll history over a longer period of time.

6
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Included in the study is a comparison of the natural-roll-frequency cumulative distri-
bution functions for several values of the processing parameters for the USS Providence
and a correlation with ship-size parameters of the measured natural roll frequencies for a
variety of American naval vessels.

Of theoretical interest is an investigation of the variance and bias in the estimate of
the resonant frequency of a linear system when the input is white noise. The variance
arises as a result of averaging the spectra from a finite number of realizations from the
ensemble of possible realizations of the process, whereas the bias is induced by transform-
ing a finite length of each of the infinite number of realizations to obtain the spectra to
be averaged. These two effects are studied separately: the variance by assuming a finite
number of realizations of infinite length (zero-bias case) and the bias by assuming an
infinite number of realizations of finite length (zero-variance case).

The effect of these considerations on the estimator of the natural roll frequency is
assessed by assuming two linear systems in tandem fed by white noise and having transfer
functions equivalent to (a) the square root of the Pierson-Moskowitz [16] wave-slope
spectrum that drives the ship in roll and (b) the transfer function of the ship in the roll
plane. In the absence of bias, the estimator of the natural roll frequency was found to
be normally distributed, a condition deriving from the high degree of symmetry in the
overall transfer function in the vicinity of resonance and the very rapid decrease in the
probability away from resonance. The bias, which is due to leakage of power through
the sidelobes of the spectral window in the convolution between the spectral window and
the spectrum of the process (in this case the overall transfer function), accounts for a
downward shift in the estimate of the resonant frequency because of the particular asym-
metry in the transfer function (higher below resonance and lower above resonance).

To demonstrate the effects of bias from leakage for the case of short sample lengths
(a few cycles of the process) an analysis of the error in estimating the frequency of a trun-
cated sinusoid is included as Appendix A. This analysis emphasizes the effect of leakage
from the negative-frequency image, which can be substantial when the record to be trans-
formed is short and the spectrum has a few dominant "lines."

Synopsis

The section that follows, "Roll Behavior of a Ship at Sea," discusses the roll behavior
of a ship at sea and the major assumptions required in this study. The equation of motion
in the roll plane (linear and uncoupled) and its solution are given. From this the natural
roll frequency, or frequency of resisted rolling in still water, is identified. Also identified
from the solution of the equation of motion is the transfer function. From this is found
the roll resonant frequency (the peak of the transfer function). A deterministic relation
is then found for the natural roll frequency in terms of the roll resonant frequency and
the coefficient of roll damping. The coefficient of roll damping, its effect on the linearity
assumption, and a method for its measurement are next discussed. Finally, the spectrum
of the driving force is defined and expressed in terms of the one-dimensional frequency
spectrum for the wave heights. This spectrum is the most easily measured and has been
modeled for fully developed seas by several workers, most recently by Pierson and Moskowitz
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[16]. Several examples of the spectrum of the driving force are given; when compared
with the squared modulus of the transfer function, they give some idea of the effect of
the former on the roll spectrum and on the estimate of the natural roll frequency.

The next section, "Spectral Analysis of Ship Roll History," treats the aspects of the
theory of spectral analysis that are necessary to an appreciation of the problems in deriving
the probability distribution for the estimates of the natural roll frequency. First a 2-hr
sample from the roll history of the USS Providence is reproduced and some basic assump-
tions are discussed. Then the power spectrum of the roll process is defined as the Fourier
transform of the autocovariance function of the roll stochastic process. Next discussed
is a method for estimating the roll spectrum when finite lengths of the roll history are
available for processing. The distributional properties of power-spectral estimators are
reviewed, and this information is used to derive the probability distribution for the esti-
mator of the natural roll frequency. The section concludes with a discussion of the bias
in the estimator of the natural roll frequency resulting from processing finite-length sam-
ples of the roll history and from the steepness in the spectrum of the driving force in the
vicinity of resonance.

The spectral analysis method is then applied to actual roll histories from a variety of
American naval vessels. This section of the report begins with a summary of the conditions
under which the data were gathered and then discusses considerations in the selection of
the parameters for the processing of the data. It then reports the results of processing 12
hr of roll history from the USS Providence and shows that with appropriate processing
the spectral analysis of ship roll history may yield an estimate of the natural roll frequency
with very small variance. This discussion concludes with correlations of the natural-roll-
frequency estimates for a variety of American naval vessels with various size parameters
(length, beam, draft, and displacement). These correlations are presented with a view to
using measurements of the natural roll frequency, if such measurements could be extracted
from radar data, as a means of classifying radar targets.

Appendix A, on the error in estimating the frequency of a truncated sinusoid by spec-
tral analysis, is included to help explain the source of some of the variability in the esti-
mates of the natural roll frequency based on short sample lengths.

ROLL BEHAVIOR OF A SHIP AT SEA

Equation of Motion

The equation of motion in the roll plane for a vessel experiencing resisted rolling in
regular, beam seast is given [17], with a slight change in notation, as

d2 + 2wA Kd + 2 O = W2 0 sin wt (1)
dt2 r of dt r r m

t Definitions of terms commonly used in naval architecture and oceanography are given in Appendix B.

8



NRL REPORT 8070

where

Wr = the radian frequency for unresisted rolling in still water

W = the radian frequency of the waves driving the ship in roll

Om = the angle of the maximum wave slope

K = the coefficient of roll damping (differing from that given in the cited work
by a factor of 7r-1)

ep = the roll angle

The general solution to this linear, second-order differential equation with constant
coefficients, which can be verified by substitution, is given by

0(t) = F( [2) + 4K2(Tf 2)j

XOm sin 2irft - tan 1 K2K( )]}

+ ae-2 7TKfrt sin [27rfr(1 - K2) 1 /2t + b] (2)

where a and b are arbitrary constants to be determined from the initial conditions and
where the frequencies fr and f are equal to Wr/27r and w/27r.

Natural Roll Frequency

The second term in Eq. (2) is the transient response consisting of a damped oscillation
at the natural frequency

f = fr (1 - K2)1/2. (3)

It is this frequency, the natural roll frequency for resisted rolling in still water, that is
observed in rolling tests in calm water alongside a wharf where a heave with a crane to a
bollard or in a harbor where a sharp maneuver of the rudder is sufficient to excite the
damped oscillations characterizing the transient response. If we take the time between
alternate zero crossings as the period of the oscillation, the average of several such rolling
tests should be expected to give a measurement of the natural roll frequency with a reason-
ably small variance.

Coefficient of Roll Damping

Because of the detrimental effects of rolling - such as structural stress, shipping of
water, discomfort to passengers and crew, damage from shifting cargo, and in extreme
cases capsizing - the damping of roll motion has received considerable attention. The
interested reader is referred to Refs. 2, 5, 6, 17, and 18 for a more extensive treatment

9
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of the topic and for additional references. The intent here is simply to demonstrate what
may reasonably be taken as the coefficient of roll damping for the ships under study and
to show that in the appropriate regime of ship speed or of roll angle the damping can be
assumed to be linear.

Briefly, roll damping is attributable to two phenomena: (a) wave generation, which
varies linearly with velocity; and (b) viscous damping, which varies as the square of the
velocity and arises from friction and from flow separation over bilge keels. Lalangas [19]
showed, from model studies, that damping was linear for roll angles not exceeding about
10 degrees. For the data analyzed on pp. 38 - 54, the USS Providence exhibited a maximum
roll angle of about 7.5 degrees. It was assumed, therefore, that roll damping was linear.

The value of the coefficient of roll damping is normally determined from rolling tests
in still water by comparing the exponent in the transient response, the second term in
Eq. (2), with the envelope of the damped oscillations. An alternative approach, described
by Cartwright and Rydill [9], is to use the envelope of the autocorrelation function, which,
if the spectrum of the driving force is uniform in the vicinity of resonance and if the rolling
is linear, is identical with the envelope of the decaying oscillations in still water. The equiva-
lence can by explained by noting that for the assumed conditions the roll spectrum is essen-
tially the square of the modulus of the transfer function scaled in amplitude by a constant
equal to the amplitude of the spectrum of the driving force. The autocorrelation function
of the roll process, which by the Wiener-Khintchine theorem [20,21] is the Fourier trans-
form of the roll spectrum, is therefore the autocorrelation function of the impulse response.
For positive arguments the autocorrelation function of the impulse response is functionally
identical with the impulse response, differing only in amplitude and phase. Since the impulse
response is simply a member of the set of all possible transient responses, the equivalence
follows. Stated mathematically,

r(¢D;f)= IH(f)12 F(E;f)

- CIH(f)12

-y(41;u) Ch(t) ° h(t)

where C is the magnitude of F(E);f) in the vicinity of resonance, y'(Q;u) is the autocorrelation
function of the roll process, h(t) is the impulse response of the ship in the roll plane (the
Fourier transform of the transfer function), - denotes approximate equality, and the symbol
a denotes autocorrelation. From the transient term in Eq. (2) we can write the impulse
response as

h(t) = Ae-at sin(bt + B) U(t)

where A and B are the arbitrary constants appropriate to the impulse response, U(t) is the
unit step function, and for simplicity a = 27rfrK and b = 27Tfr (1 - K2)1/2. With this expres-
sion for the impulse response, the autocorrelation function for the roll process may be
written, for u > 0, as

10
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'y(F;u) C J Ae-at sin(bt + B) U(t)Ae-a(t + u) sin[b(t + u) + B] U(t + u) dt
_00

00

W CA2 eau f e2at sin(bt + B) sin[(bt + B) + bu] dt
max(O,-u)
00

CA2 e-au r eb2at sin(bt + B) [sin(bt + B) cos bu + cos(bt + B) sin bul dt

L o 00

CA 2e-au cos bu |o e-2at sin2(bt + B) dt + sin bu fo e-2at sin(bt + B)

cos(bt + B) dt

CA2 eau(P cos bu + Q sin bu)

Ee-au cos(bu - F)

where P and Q are equal to the integrals multiplying cos bu and sin bu and where E =

CA2 (p2 + Q2)l/2 and F = tan-1 (QIP). This shows the equivalence of the exponent in the
autocorrelation function above and the exponent in the transient response.

Assuming for the moment that the above conditions are met, we find from examina-
tion of the autocorrelation function estimator in Fig. 1 that the envelope of the decaying
oscillations decreases to e-1 of its initial value by about 27 sec, which yields a roll-damping
coefficient equal to 0.081, assuming a frequency fr for unresisted roll in still water of
0.0731 Hz. This value differs from the value cited in Ref. 17 as normally obtaining -

that is, K = 0.032. The difference between these two values is probably attributable to a
broadening of the resonant peak in the roll spectrum due to the steepness in the spectrum
of the driving force in the vicinity of resonance.

To check the validity of this hypothesis, we computed simulated roll spectra for
several windspeeds by taking the product of the power transfer function and spectra of
the driving force derived from the Pierson-Moskowitz spectrum [16] (pp. 12 - 18). The
half-power bandwidth of the resonant peak in the roll spectrum was identical (to better
than 0.0001 Hz) with that of the power transfer function for windspeeds above 20 m/sec.
At 10 m/sec there was significant broadening of the resonant peak. At low windspeeds
the peak of the transfer function lies to the left of the peak in the spectrum of the driving force
where the rate of change of power with frequency is the greatest.

11
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LAG (SECONDOS

Fig. 1 - Autocorrelation-function estimator for 4 hr
of roll data from the USS Providence (CLG-6), Feb-
ruary 16, 1972

Roll Transfer Function

The transfer function, which gives the amplitude and phase of the response of the
vessel to sinusoidal driving functions of arbitrary frequency, can be deduced from the
steady-state term of Eq. (2) to be

( [2)2+ 4Kf2 exp{i tan1 [2K( (4)

The square of its modulus is plotted in Fig. 2. The modulus peaks at the roll resonant
frequency fo, which varies, as seen in the figure, with the coefficient of roll damping. For
the small values of the coefficient that normally obtain (i.e., for K ; 0.032), the resonant
frequency departs little from the natural roll frequency that we are endeavoring to estimate.

The relationship between the roll resonant frequency fo and the natural roll frequency
fip (the frequency of resisted rolling in still water) can be found by maximizing the modulus
of Eq. (4). The result is

fO = fr (1 - 2K2)1/2. (5)

Substitution of Eq. (5) into Eq. (3) for the frequency of unresisted rolling in still water
yields

f= Ko( 2 1 2) (6)
For a nominal coefficient of roll damping of 0.032, the radical above equals 1.0005, so that
there is no appreciable difference between the natural roll frequency and the resonant frequency.

12
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Fig. 2 - Squared modulus of the transfer function in the roll plane vs
coefficient of damping

Under such conditions we may properly define the natural roll frequency as the frequency
at which the modulus of the transfer function peaks.

Spectrum of the Driving Force

It was previously pointed out that if the spectrum of the driving force is smooth rela-
tive to the transfer function, the global maximum in the roll spectrum will approximate
the roll resonant frequency fo with a bias dependent on the steepness in the spectrum of
the driving force in the vicinity of resonance. It is the purpose of this section to give an
expression for the spectrum of the driving force and to show that it can be assumed to be
smooth.

As shown by Longuet-Higgins et al. [22], the frequency spectrum of the wave slope
along the x axis may be written

r -2;a) = fo k2 cos2 VI r(7;a,4i) do
(ax ~0

where

q = the wave height

a = the radian frequency

k = the wave number

0 = the polar angle measured counterclockwise from the positive x axis
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The notation, due to Stilwell [15], shows explicitly that I [(a8q/ax);a] is the spectrum
of the wave slope a7i/ax along the x axis and is a function of the frequency a. The
directional, wave-height, frequency spectrum r(i 7;u,4) gives both the frequency a and
direction of travel 4 of the wave components making up the wave height iq(t) at a given
point in the ocean.

From Eq. (1) the driving force for beam seas is seen to be induced by the angle 0(t)
that the surface of the wave makes with the horizontal or, equivalently, that the wave
normal makes with the vertical. For oblique seas the angle 0(t) can be defined as

0(t) = tan- 1 aq (8)
ax

where the x axis is normal to the roll axis and to the local vertical. For small wave slopes
the arctangent can be approximated by its argument. Expressions for the mean square
slopes presented by Cox and Munk [23,24] indicate that, for wind velocities as high as
50 m/sec, the rms value of the angle 0(t) for the larger gravity waves is only 16 degrees.
Hence we can write for the spectrum of the driving force in Eq. (1) in the case of oblique
seas

27r

F(O;a) f k 2 cos 2 4 r(q7 ;a,0) d;. (9)
0

The directional frequency spectrum F(7 ;a,) is related to the one-dimensional frequency
spectrum F(-q;a) for the wave height '7(t) by the expression

I =- q(7 ;a) K(a;0-4,0) (10)

where 40 is the wind direction and where the spreading function K(a;0-4 0 ) may, in gen-
eral, be a function of the frequency a. Kitaigorodskii [25] lists several spreading functions,
among which

03Cos, (;-0)' 14/-;ol < 2
K~axxO=1 (11)

0 otherwise

seams particularly simple but adequate for our purposes. Substituting Eqs. (10) and (11)
into Eq. (9) gives

k2 '0\10 +7r/2 8
F'(0;a) X 8(n;a) cos2 4, cos4 (4,-40) d;

fQo -7r/2 i

a a 3(77;a) A~o) (12)
-F(77;a) A(4,0) (12)

14
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where A(4O) is equal to the integral in the line above. Use has been made of the dispersion
relation a 2 =gk for waves in deep water, g being the acceleration due to gravity.

Because of the impact of adverse sea conditions on shipping, there have been efforts
(see, for example, Refs. 16, 26, and 27) to characterize the sea by means of enery spectra
with wind velocity as a parameter. The spectral form given by Pierson and Moskowitz [16]
for a fully developed sea is

r(?7;a) = g exp ) (13)

where V is the windspeed, a is the radian frequency, and a and f3 are dimensionless con-
stants equal to 0.0081 and 0.74, respectively. Use of the Pierson-Moskowitz spectrum in
Eq. (12) yields

(14)
a) 2 L I-J A(4 0)

where A(4O) is a function only of wind direction 40. This will be referred to as a Pierson-
Moskowitz wave-slope spectrum, shown in Fig. 3 for several windspeeds. The point to be
noted is the smoothness of the spectrum and the slope over the band of frequencies from
0.04 to 0.12 Hz within which the natural roll frequency of most ships would be expected
to fall.
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Fig. 3 - Wave-slope spectra vs wind speed from Pierson-Moskowitz spectrum
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Since the Pierson-Moskowitz spectrum represents the average of a great many spectra,
one might properly ask what a short-term spectrum, based on the amount of ship-roll data
that would likely be available for processing would look like. Figures 4 through 6 show
the wave-slope frequency spectrum for wave-height data from Argus Island, a platform off
the coast of Bermuda. Figure 4 is a typical spectrum corresponding to 100 sec of data,
whereas Fig. 5 is an average of 12 such spectra with rectangular weighting. Figure 6 is an
average of the same 12 spectra, but the data has been weighted by a data window corre-
sponding to sin4 (irt/T), where T is the sample length. The reason for weighting the data
is to achieve a spectral window with desirable characteristics. This point is discussed fur-
ther on pp. (28 - 30).

-20

-30

iiv

G3
Eo
-3

-50

dJ

3
U

-60

FREQUENCY (HERT7)

Fig. 4 - Slope spectrum of wave-height record from
Argus Island for 100 see of data

An obvious feature of the spectrum of Fig. 4 is its noiselike character over the band
of frequencies from 0.04 to 0.12 Hz. This variability decreases with averaging, as shown
in Fig. 5. By choosing a spectral window with lower sidelobes than those of the sinc-
function spectral window employed in Figs. 4 and 5, the spectrum is made smoother over
the range of interest.

Equation (14) for the spectrum of the driving force is deficient in one detail since
for a ship moving with a velocity v through the sea the frequency components in the sea
are doppler-shifted by an amount a(v/c) cos X to give a frequency of encounter

(15)(o = - - Cos

16
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Fig. 5 - Slope spectrum of wave-height record from
Argus Island resulting from averaging twelve 100-sec
spectra with rectangular weighting
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Fig. 6 - Slope spectrum of wave-height-record from
Argus Island resulting from averaging twelve 100-sec
spectra with sin4 (7rtlT) weighting
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where c = g/a is the wave celerity, v is the ship speed, and X is the angle between the ship
heading and the wave direction. The inverse transformation from X to a is not unique,
and the mathematics of the transformation to an encounter spectrum become quite tedious.
The reader interested in the details of the transformation is referred to Refs. 6 and 28.

Intuitively, we would expect that frequency components in the sea within a small
angle of the bow or stern of the ship would be shifted in frequency by rather large amounts,
whereas components coming from abeam would barely be shifted. Since it is the frequency
components from abeam that are most effective in exciting the ship in roll, it would appear
that the encounter spectrum for the driving force would not differ appreciably from that
given by Eq. (14).

Moreover, the low-frequency waves in the vicinity of resonance have a higher celerity
and are therefore shifted proportionately less in frequency. Also, for the ship motion
histories discussed in this report, the speed of the ship was rather low, being only 6 knots,
so that for these cases the doppler shift would be small. For a resonant frequency of 0.0730
Hz, the maximum doppler shift would be only 0.0015 Hz for waves at the frequency of roll
resonance coming from ahead or astern.

SPECTRAL ANALYSIS OF SHIP ROLL HISTORY

Roll Stochastic Process

Ship roll histories (e.g., Fig. 7) are time series - that is, random, or nondeterministic,
functions of time due to the randomness of the sea that drives the ship in roll. These his-
tories are characterized by the fact that future behavior cannot be predicted exactly from
knowledge of the past. Two records from the same time series, though differing in detail,
may nevertheless show similarities in their statistical, or average, properties. Hence one
pictures a particular roll history as one realization of a stochastic process described by a
set of random variables {Cf (t)} and the joint probability distribution associated with each
of the times t. Although the time series represented by the ship's roll history is continuous,
the need to process data on a digital computer will require that they be sampled at discrete
times.

Some important assumptions are normally made in time-series analysis for the sake of
tractability of the mathematics. One of these assumptions is stationarity, which implies
that the process is in statistical equilibrium. Lack of stationarity, or nonstationarity, implies
that the statistical properties change with time. For example, the violence of the motion of
a ship at sea increases with the sea state, or in the case of roll the amplitude of the oscilla-
tions is greatest when the ship is on a heading that places it broadside to the predominant
direction of the sea. In these cases the variance of the roll angle is a function of time as
the ship alters course or as the weather changes, thereby affecting the sea state. The roll
history may also exhibit bias due to heeling of the ship under the influence of a strong
wind that is itself random. Hence the roll hsitory is stationary over limited times only.
Since these times are normally much longer than the duration of the records being processed,
the assumption of stationarity is made.

18
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Fig. 7 - Ship roll history from the USS Providence
(CLG-6), February 14, 1972

Another assumption frequently made is that the process is Gaussian. This assumption,
coupled with that of stationarity, implies that the process may be completely characterized
by the lower moments of its probability distributions, which include the mean and auto-
covariance function or, equivalently, the power spectrum. If the process is not Gaussian,
the lower moments are no longer the only relevant statistical properties; they are, however,
as pointed out by Blackman and Tukey [29], usually the most useful ones.

Power Spectrum of the Process

The autocovariance function of the roll process, assuming stationarity of {¢(t)}, is defined
by

y((D;u) = E {[1(t) - P] [II(t + U) - U]} (16)

where E denotes expectation, ji is the mean of the process, and u is the lag. The notation
(4);u), as pointed out previously, indicates that this is the autocovariance iy for the roll

process {¢1(t)} and is a function of the lag u.

This function has played a dominant role in the spectral analysis of stationary time
series. There have been several reasons for this, but chief among them has been its rela-
tionship to the power spectrum of the process r(4';f) through the Fourier transform
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(17)r(oD;f = f y(,i;u)e-i2 rfu du,
00

a relation attributed to Wiener [20] and Khintchine [21] and referred to as the Wiener-
Khintchine theorem.

Power-Spectral Estimators

Since the amount of roll data ep(t) available from measurements will, in practice, be
limited to some finite interval (0,T), the autocovariance function in Eq. (16) must be esti-
mated by a sample autocovariance function c(p;u):

I1 rT-Ju|

7 O f
0

[p(t) - Ip] [I(t + IuI) - 9p] dt, lul 6 T

(18)

0 (Jul > T).

where the sample mean p is defined by
1 T

ip= -F | ip(t) dt.
0

The estimator in Eq. (18) is asymptotically unbiased, which can be seen by taking
its expectation

E[c(4;u)] = Ei.- |
0

=1 fT-Iu IE 
0

T TIuI

1 rT-juI
= T f Y''

[¢F(t) - 4F] [F(t + IuI) - (I] dt}

{[¢(t) - 4f] [4F(t + Jul) - 4]} dt

D;u) dt

= (i i Ti) y(F;u) (20)

where it has been assumed that the mean E[1D(t)] of the process is zero.t

t Use of the capital F1 in Eq. (20) as opposed to the lowercase up in Eq. (18) is made to draw attention
to the fact that c((D;u) is a random variable, whereas c(ip,u) is but a single sample function.

20
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The effect on the power spectrum of estimating the autocovariance function accounts
for much of the literature on the theory of spectral analysis. If in place of the autocovariance
function (Eq. (16)) we insert the sample autocovariance function (Eq. (18)), we obtain the
sample power spectrum

C(p~;f) = f c(<p;u)e~i2vfu du. (21)
_00

The first moment of this estimator can be written, using Eq. (20), as

E[ C(; f)] = f uy(1;u) (1- 1t)e-i2iffu du. (22)

It can be seen that in the limit, as the record length tends to infinity, the expectation tends
to the power spectrum of the process, that is,

r(4;f) = lim E[C(4;f)]. (23)

Here lies the major difference between the analysis of deterministic signals and sto-
chastic processes. Only for the case of a deterministic signal does the sample power spec-
trum converge as the length of the sample tends to infinity. For a stochastic process, it
is the ensemble average of the sample power spectrum that converges. A graphic example
of the nonconvergence of the sample spectrum for white noise is given by Jenkins and
Watts [30]. It is shown there how a single sample spectrum for white noise is not constant,
as one might suppose, but is characterized by peaks and nulls that are reduced only through
the averaging of many sample spectra.

The equivalence between the sample power-spectral estimator in Eq. (21) and the
periodogram of Schuster [31], whose distributional properties are reviewed in subsequent
sections, can be seen from the following development, which begins with the definition
of the periodogram:

1
Cf n 1 AS ot)112

1 T T
= T f {p(t)e} Mrff d*{pt},)ei27rf1 dq

_ | jT sot) p(j7)e-i2 7ff( 7) dtdq
0
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= |T 1 | ) p(?90(71 + u) drj e-i2 nfu du-T f

T T-|ul

= 1 T _ | p(,q) Sp(77 + Jul) d77 e-i27rfu du
-T 0

00

= f c(op;u)e-M2 fu du,

which is the sample power-spectra estimator in Eq. (21). In the development 5f {<p(t)} is
the Fourier transform of the sample-function p(t), which vanishes outside the interval
(0,T). The asterisk denotes the complex conjugate. In line 5 of the development the
transformation of variables was made corresponding to u = t - 17. The limits of the inte-
gral in the last line were extended to ±00, realizing that the sample autocovariance function
c(sp;u) vanishes outside the interval (-T,T).

Distribution of Power-Spectral Estimators

To derive the distributional properties of the roll-frequency estimator in subsequent
sections we will need the probability distributions for the sample power-spectral estimators.
These will be obtained by first considering the probability distributions for the sample
power-spectral estimators for a Gaussian white-noise process {Zh} , k = 0,+1 ±2,+3,..., and
then synthesizing the sampled process {4k}, k = 0,+1,+2,±3,..., by using the white-noise
process as the input to a linear filter with a transfer function satisfying the relation

IH(f)12 = 1 r(Pk;f)
a2 At

where a2 is the variance of the white-noise process and At is the time interval between
adjacent measurements (i.e., between Zk and Zk+l).

The derivation, with some modifications, follows that given by Jenkins and Watts [30].
We consider, then, a sample (k = 0, 1, 2,...,N-1) from the Gaussian white-noise process
{Zk} , k = 0, 1,+2,..., with zero mean, variance a2, and spacing At. The sample power-
spectral estimator may be written in terms of the periodogram ast

C(Zk;f) = {Zk} 12, k = 0,1,2,... ,N-1 (24)

N-1

- t 1 \At E Zke-i27TflAt 2
NAt 1

k =O

tSampling of the process in time incurs periodicity in the frequency domain so that the frequency is
restricted to the unambiguous range (-1/2At,1/2At), which will be implied for all spectra computed from
sampled data.
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N-i N-1At~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t
=_ ( ~~Zk cos 27rfkA + w Zk sin 27rfkA

=AN [A2(f) + B2 (f)] (25)

where
N-1

A(f) = Z k cos 27rfkAt, (26)

k=O

N-1

B(f) = I Zk sin 27rfkAt. (27)

k=0

Since E[Zk] = 0, then E[A(f)] = E[B(f)] = 0, and at the harmonic frequencies fn = n/T =
n/(NAt), n =0,1,2,...,N-1:

Var[A(fn)] = E[A 2(fn)]

N-1

= 2 E oS 27rnk)

k=O

a2 N, n = 0 N
'2

(28)

a2 - n = 1,2,.. -1.

Similarly,
N0,-

Var[B(fn)) (29)

N-1 N-1
(fm)] = I , ~~~27rnk\ (27rml\

Cov [A(fn),A(m) E[ZkZl cos (N) cos 

k=O 1=0

N-1
21~_rnk) /27rn

= a2 1 cos cos N

k=O

0, n 0 m. (30)

23



WILSON G. REID

Similarly,

Cov[B(fn),B(fm)] = 0, n fL m (31)

Cov[A(fn),B(fm)] = 0, all nm. (32)

Since A(fn) and B(fn) are linear functions of Gaussian random variables, they are themselves
distributed normally. In addition, they are independent, which follows from their being
uncorrelated, normal, random variables. Therefore

A 2(fn) 2A2 (f)

Var[A(f,)] Na2

=2xi X12-(33)
B2(fn) 2B2(fn)

Var[B(fn)] Na2

Since these random variables are independent and distributed as X2, their sum

2 [A2(f 2C(Zk;fn) 2 2
Na 2 n)] = a 2 At X2 (34)

is distributed as chi squared with two degrees of freedom except for n = 0, N/2, for which
B(fn) = 0, so that the sum is chi squared with one degree of freedom.

Since the expectation and variance of a chi-squared random variable with v degrees of
freedom are v and 2v, respectively, we can solve for the expectation and variance of the sam-
ple power-spectral estimator as follow:

E(Zh;kn)] 2,a2 At

E[C(Zk;fn)] = a2 At = F(Zk;fn), (35)

r2C(Zk ;fn)]4

Var[C(Zk;fn)] = a4 (At)2 = F2 (Zk;ff) (36)

where it will be remembered that r(Zk;f) is the power spectrum of the process. This shows,
as Slutsky [32] stated, that the variance of the sample power-spectral estimator is a constant,
independent of the length N, and that, therefore, there is no convergence of the sample
power spectrum to the power spectrum of the process as N tends to infinity. Although
the derivation above assumed that the noise was Gaussian, the restriction is not severe since
the central limit theorem should render the distribution of the random variables A(f) and
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B(f) nearly Gaussian and that of the power-spectral estimator nearly chi squared regardless
of the distribution of the process.

The analysis of the white-noise process can be extended to the case of white noise as
the input to a linear filter, where, by a suitable choice of the transfer function, the power
spectrum of any stochastic process can be reproduced. The general relation between the
input and output power spectra for a linear system may be written in this case as

r(4Ik;f) = IH(f) 2 r(Zk;f) (37)

where for white noise r(Zk;f) = a2 At.

The sample power spectrum for a finite segment of the stochastic process may be
written

C(¢Ik ;p = Ty | rect [kNI/2)]k} 2

{ect [k(N ]2) [hk * (38)

T N I N]}1 jhf [k(2l\12
~'j (hk ect L (N/2jZk}) 1(39)T kN

T {hk} f {rect [k-(N/ )]Z} |2

IH(f)l12 1 |f{rectpk Z ]Zk}l

I H(f) 12 C(Zk ;f) (40)

where, because we know the distribution of the sample power-spectral estimator C(Zk ;t)
for the white-noise process, we may write

E[C(4>k;f)] - IH(f)12 F(Zk;f) = '(ek;f). (41)

Similarly, as seen from Eq. (35), C(Zk;f) is an unbiased estimator.

Var[C(ON;ff) tF 2 (dk;f)- (42)

Jenkins and Watts [30] point out that the approximation in going from Eq. (38) to
Eq. (39) requires that the impulse response h(t) tend to zero in a time short compared
with the length T of the sample. The reason for this can, perhaps, be better appreciated
by a comparison of the spectra in each case. Evaluating the transform within the modulus
signs for Eq. (38) gives

T sinc(Tf)e-i,,Tf * [H(f)Z(f)] (43)
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and for Eq. (39),

H(f )[T sinc(Tf )e-iTTf * Z(f ) ] (44)

where H(f) and Z(f) are the Fourier transforms of h(t) and {Zk} for k = 0,1,2, ... , N-1.
In Eq. (43) we see that the smoothing and consequent leakage through the sidelobes of
the sinc-function spectral window corresponding to the rect-function data window is applied
to the transfer function as well as to the noise, whereas in Eq. (44) the same effects are
applied only to the noise, and not to the transfer function. From this formulation it is
easy to see that the spectral window would have to be narrow (large sample length T)
relative to the resonant bandwidth of the transfer function in order for the approximation
to be close.

Stability of Power-Spectral Estimators

The defect in the periodogram relating to its nonconvergence for increasing sample
size was known to Schuster [31], who commented that, were it not for the prohibitive
computational effort required, one should follow the practice, common in optics, of
averaging the successive periodograms obtained by varying continuously the starting time
of the sample. "Smoothing" of the periodogram by averaging over neighboring values of
frequency was suggested by Daniell [33]. Kendall [34] then observed that this smoothing
was tantamount to truncating the autocorrelation function, whose Fourier transform had
been noted by Wiener [20] to be equivalent to the periodogram. A similar result was
arrived at independently by Bartlett [35], who noticed that averaging periodograms
obtained from contiguous lengths of series was approximately equivalent to truncating
the correlogram (autocorrelation function) at a point represented by the length of the
subseries.

To appreciate the reduction in the variance (increase in stability) achieved by averaging
sample spectra, we need only consider that the distribution of the sample power-spectral
estimators for Gaussian white noise derived in the preceding section was chi squared with
two degrees of freedom except for n = 0, N/2, where the estimators were distributed as
chi squared with one degree of freedom. By the reproductive property of chi-squared
random variables with v degrees of freedom, the distribution of the sum of m such inde-
pendent random variables is also chi squared but with vm degrees of freedom. Therefore,
if we define

m

C(Zk;f) = mZ Ci(Zk; fn) (45)
i= 1

where C(Zk;fn) is the smoothed sample power-spectral estimator obtained by averaging m
sample power-spectral estimators and where Ci(Zk ; ) is the sample power-spectral estimator
computed from the ith nonoverlapping sample of the process {Zk} , we may write
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X2 M) n =N,,.. 2 2, 

2mC(Zk ;fn) =

a2 At
2 N

The variance of the smoothed power-spectral estimate is then

2mrC(Zk ;fn )
Var 2t = 4m,

_rL a2 At 2'

Var[C(Zk;ffl)] = m m ' (46)m m

which shows that the variance of the smoothed sample power-spectral estimators for Gaussian
white noise has decreased by a factor of 1/m by averaging m sample spectra.

Use of the above results and Eq. (40) allows us to derive an expression for the variance
of the smoothed sample power-spectral estimator for an arbitrary stochastic process where
the sample length T is large. Taking the m-fold average of both sides of Eq. (40), we obtain

C'kt) - JH(fn)j2c~(Zk;fn)

2mQC(I'k;ffn) 2mC(Zk;fl) 2

IH(fn)l2 a2 At a 2At X2m (47)

r2mZC(4);n)l
Var I--4m,

IH(f') 12 a2A t

- [H~~I-(f ) 14 ( t) 2 a4
Var[C(4]k;4n)] m

lH(f,)14 F2 (Zk;ffl)

]p2(41k;fn (8(48)
m

Given a record of finite length, this smoothing procedure suggests that it be subdivided
into m segments each T seconds long. The larger m is, the smaller the variance will be. How-
ever, as m increases, T decreases, resulting in a larger bias B(f), given by

B(f) = E [C (4k; f)] -17(4k; f). (49)
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Bias of Power-Spectral Estimators

To understand the source of the bias and its relationship to the variance of the smoothed
sample power-spectral estimators for a record of given length that has been partitioned into
m segments, we will redefine the sample autocovariance function given by Eq. (18). For
clarity continuous time functions will be assumed since discreteness in time implies perio-
dicity in the spectrum, which we wish, for the present, to avoid. For continuous time the
sample autocovariance function is given by Eq. (18) as

I1 T-|ulI

c(ip;u) =-T

If we suitably restrict the factors in the integrand with rectangle functions

et\ {I, it rect(Y'-T= 2-

.T otherwise,

we can write the limits of the integral as extending from -oo to +-:

(50)

c(P;u) = T f
_00

r t - (T/2 r t - (T/2) + Jul]
rect T I[so(t) - Up] rect T 

X [I(t + Jul) - f] dt. (51)

Taking the expectation of both sides and assuming a process with zero mean E[II] = 11~p = 0,
we obtain

E[c(4);u)] = 1 f rectFt - (T/2)] rect - (T/2) + lul]

X E{[c1(t) - F] [ DJ(t + Ilul) - 'f]} dt

- .00 (T/2)][ (T / + Judt= T f rect[ -T / 2]rectFt -(y/T) + [] (;u) dt

~00
- ('it_ -/ -(T2 +J

=T J recta T I ]recta /T |LI dt y(4I>;u),

(T )
(52)
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which is Eq. (20). With this formulation we recognize that the use of the rectangular data
window to truncate the time series {¢D(t)} in Eq. (51) is equivalent to the use of the tri-
angular lag window to weight the autocovariance function of the process. We note also
from Eq. (52) that the triangular lag window results from the autocorrelation, or self-
convolution (since the two operations are identical for even functions), of the rectangular
data window. This suggests, with some malice aforethought, that we weight the data with
a window appropriate to the nature of the process and of the information being sought.
If, then, we define as the sample autocovariance function (assuming zero mean for the
process)

00 T2' ,rT/2x + Ju
c(v0;u) = T f T 0](t)w - jIP(t + Jul) dt (53)

where the data window w(t) has the properties

w(0) = 1, (54a)

w(t) w(-t), (54b)

w(t) = 0, ItI >- (54c)
2'

we can derive the expression for the expectation of the smoothed sample power-spectral
estimator:

El[C(;u)] = F E CkD;d

m~ + E I| w[ (T/2) - kT]w - (T/2) - kT + Iu]
k=1 .0

X E[F(t - kT)4(t - kT + lul)] dt

- '1 00 Ftu/ikT[(/2-T
=y(4;u) - | w (T/2 w (T/2) - kT + ul] dtm/ T LT LT

k=1 .00

On Fourier transforming both sides, we obtain

S{E~c( } = y {Edi c Ck ); j},

m

E~y{~b;)}]= rQIo;fl *-E1 TIW(Tf)e~i2rZkTI2
k=1
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m

= r(D; f) * I E TW2 (Tf),

k=1

E[(CQF;t)I = eI`(;f) * TW2(Tf). (55)

From Eq. (55) we see that the effect of truncating the process to a length T with a
data window w {[t - (T/2)] /T} is the convolution of the power spectrum r(F;f) of the
process with the spectral window TW2 (Tf). In general, if we knew nothing about the
spectrum of the process, the possibility of mischief inherent in the convolution of the
spectrum we are endeavoring to estimate, with a spectral window having a finite band-
width and a sidelobe structure of finite extent, would give us little cause for confidence
in an estimate of the position of a peak in the spectrum.

Variance of the Roll-Frequency Estimator

If the sample length T is large enough for us to assume that the sample power-spectral
estimate is essentially unbiased, then it should be possible to assess the effect of the varia-
bility of the smoothed sample power-spectral estimates on the variance of the estimate of
the resonant frequency, or peak of the transfer function, when Gaussian white noise is the
input. For the small values of roll damping that normally obtain, the resonant frequency

will be the natural roll frequency, as noted on pp. (12 - 13).

A sketch of the procedure is shown in Fig. 8. The power spectrum of the process
r('Dk;f) is obtained by putting Gaussian white noise fZk} with variance a2 through a
filter with the transfer function H(f) given by Eq. (4). Spaced at intervals of Af = T-1
along the spectrum I(Qkk;f) are circles marking the mean value of the independent spectral
estimates. Superimposed on the spectrum at one of these positions is the chi-squared prob-
ability density function that gives the variability of the corresponding spectral estimate.

The sample power-spectral estimators at the harmonic frequencies fn = nAf can be
shown to be independent, by an argument similar to that given on pp. (22 - 24). Briefly,
the coefficients A(fn) are shown to be independent of the coefficients A(fm) for norm
not only within a given sample spectrum but from spectrum to spectrum in the collection
of spectra over which the average is to be taken. A similar argument holds for B(f") and
B(fm) as well as for A(f,) and B(fm) for all n. The average power-spectral estimator at
the frequency fn is then simply a function (a weighted sum of squares) of random varia-
bles that are independent of the corresponding random variables at all other frequencies
fmi, nsrm; and since functions of independent random variables are independent, the desired
result follows.

The probability density function for the smoothed sample power-spectral estimators
is derived as follows. If the random variable x is distributed as chi squared with v degrees
of freedom, we may write its probability density function px(x) as

px(X) = 1 x(v-2)/ 2 e-X/2 U(x)2vl2 F'(v/2)
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PV (f )

1

Fig. 8 - Construction showing transformation of
probability density function from spectral estimate
to roll-frequency estimate

where r is the gamma function and U(x) is the unit step function. For v = 2m, corre-
sponding to the averaging of m such independent random variables,

PX(X) = 1 xm -1 ex /2 U(X)
2m F(m)

For y = ax,

Py(Y)= 1 PX Y
ja P(La)

= 1 ym-le-Y/ 2 aU(y).
am 2m r(m)

(56)

If we set IH(f")12 U2 At = r(4)k;ffl), we have, from Eq. (47) for the above transformation

2m
X = - k f,) C(O'k; f) = X2mn
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y = CON; 60,

r(¢k;fn)

Substitution of these equations into Eq. (56) yieldst

P'0= rnin Mn-1 exp U1n1 (57)
I'M (4ok; fn)r(m ) ex Lr('k; U() .(

In Fig. 8 there is plotted above the spectrum with the superimposed probability density
function of Eq. (57) the probability (a discrete density function) that a given independent
spectral estimate at frequency fi is the global maximum in the smoothed power spectrum
and therefore interpretable as the peak of the transfer function. The probability that
C(1 k ;fi) is the global maximum in the smoothed sample power spectrum may be written

Pfti = max[4jj=1,2,...,N]}

it ii ti
=f|dt J f ... f P1 ,2 .,N(Q1, 2,--,N)

0f fo o To
X dtj dit2. -.... di ddti~-- d~itN ... d....N... (58)

Since the tj terms constitute independent spectral estimates for the assumed conditions,
we may write

P~ti = max[j, j=1,2, ... ,N]}

0o N

= | dti pi Qi) H dijpj(j) (59)
f j= Jo1

j~ii

where the probability density functions are given by Eq. (57). If we make use of the integral
formula [36]

m

xineax dx = eax (l)r X-, (60)
P ~~~~1' ~~(m-r) ar+l

r=O

the integrals in Eq. (59) can be expressed as a finite sum:

I dj pj(#j) = 1 - exp [ F(411;f}j)] E (61)

t For simplicity of notation we set n= C(4l)k;f ).
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where the summation coefficient An j is given by

F = [Pk[jm]-n

:2:

x-n

(6M

(6 2) -
1:,

1

rP(r - n + )

The probability density function for the roll-frequency estimator fp, the frequency of
the peak in the smoothed sample power spectrum, may then be written

N 00N ~j
P(ff) =E 6(f -fi) | dpf) fj f dj Pj~(j)

i=1 0
j=Ai

(63)

where the probability density functions are given by Eq. (57).

The integral in Eq. (63) was evaluated for several values of m, the number of spectra
averaged. The envelope of the resulting discrete distributions is plotted in Fig. 9. For the
purpose of the plot, the frequency was transformed to fractional error e according to

=fp - fip

f[o

where f~o is the natural roll frequency and fp is the estimate. The
envelopes near the peak is due to the coarseness of the frequency
case 0.0002 Hz, relative to the spread in the distribution.

M

2

4

8

16

32
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DEVIATION

.0154

.0131
.0112
.0095
.0081

.0069

slight asymmetry of the
intervals taken, in this

08 -. 06 -. 04 -. 02 0 .02 .04 .06 .08

FRACTIONAL ERROR

Fig. 9 - Probability density functions for the frac-
tional error in the estimated resonant frequency
for simulated still-water rolling with number of
spectra averaged
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Several aspects of the behavior of these distributions are worthy of note. First, the
reduction in the variance due to averaging is seen to be less than 1/m even though, as
noted from Eq. (48), the variance in the spectral estimates themselves is reduced by 1/m.
If the standard deviation for m = 1 were taken as the deviation of the population, the
standard deviation for m = 16 would be 0.0039 rather than 0.0081.

Second, the probability density functions appear to be Gaussian, which is confirmed
by plotting their cumulative distribution functions on normal probability paper, as shown
in Fig. 10 for m = 8. This is interesting because a moment's reflection about the nature
of the transformation in Fig. 8 appears to indicate that the resulting probability density
function would be dependent on the shape of the spectrum r(Ok;f). To check the shape
dependence, we made the transformation for m = 1 and a roll-damping coefficinet K =
0.256. The spectrum (transfer function) for this case is seen from Fig. 2 to be somewhat
more asymmetrical. The asymmetry in this case was reflected in the tails of the probability
density function, which decreased at unequal rates, the one on the left dying out more
slowly. However, due apparently to the high degree of symmetry in the resonant peak in
the vicinity of resonance and the fact that most of the probability is contributed by this
vicinity, the resulting distribution is, to first order, symmetrical.

99
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_ 80

9 70
a, 60

50
, 40

X 30

L 20

10

-4 -2 0 Ii

FRACTIONAL EFROR

EPERCENTI

Fig. 10 - Cumulative distribution function for
the fractional error in the estimated resonant
frequency for simulated still-water rolling

The transfer function was next multiplied by the Pierson-Moskowitz wave-slope spectra
[16] for windspeeds in excess of 20 m/sec to obtain simulated roll spectra, and the above
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transformation of probability density functions was made. Although the simulated spectra
differ for rolling in still water and rolling in Pierson-Moskowitz seas, identical results were
obtained; this appears to be explained by the argument above regarding the high degree
of symmetry in the resonant peak.

Bias of the Roll-Frequency Estimator

In the case at hand, where we are seeking limited information about the power spec-
trum and hence the system - that is, the position of the peak of the transfer function -
we are not entirely without hope in assessing the effect of bias due to a finite sample
length. For example, if the peak in the power spectrum were symmetrical and it were
possible to eliminate any other asymmetry, then the bandwidth and sidelobe structure of
the spectral window, though contributing to bias in the measurement of power at a par-
ticular frequency, would leave the position of the peak unaltered in the sample power
spectrum.

We are fortunate in the case of the roll spectrum since, as examination of Fig. 2 will
reveal, there is considerable symmetry in the transfer function. It would be of interest to
examine the effect of the convolution in Eq. (55), which is the cause of bias in the sample
power-spectral estimator, on the position of the single spectral peak, assuming for the roll
spectrum the squared modulus of the transfer function in Eq. (4). Extension of the analy-
sis to a ship at sea could be made by assuming the roll spectrum to be the product of the
squared modulus of the transfer function in Eq. (4) and the wave-slope frequency spectrum
in Eq. (14) obtained from the Pierson-Moskowitz [16] spectrum in Eq. (13).

We will examine first the case of white noise applied to the input of a linear filter
whose transfer function is that given by Eq. (4). Assuming a noise process having unit
variance, we may write the power spectrum of the output of the filter as

~(~k~f) ={[i (iC)] + 4K2 (f)} ) (64)

where K = 0.032 Hz and fr = 0.0731 Hz, corresponding to the values assumed for the USS
Providence. If we assume that the output of the filter is truncated to a length T by a data
window, Eq. (55) becomes

E[C(1 k;f)] ={[1 _(i)] + 4K2( ) }* TW2(Tf). (65)

We wish to estimate the frequency of the resonant peak in the spectrum - the frequency
that, in the absence of bias, we saw from Eq. (5) to be equal to 0.0730 Hz and that,
for the small values of the roll-damping coefficient that normally obtain, may be taken as
the roll-frequency estimator f4. The results of the convolution in Eq. (65) are summarized
in Table 1, which shows for various truncation lengths T the roll-frequency estimator
f (T) and the bias B(T) in the estimate, both as functions of the truncation length. For
this case of a driving function with a uniform spectrum, the bias is seen to vanish for
truncation lengths greater than 100 sec, which is of the order of the decorrelation time
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Table 1 - Bias of Roll-Frequency
Estimator Resulting From Finite

Sample Length for Simulated
Rolling in Still Water

T | fi(T) B(T)
(sec) | (Hz) J (Hz)

10 0.0718 -0.0012
20 0.0724 -0.0006
30 0.0728 -0.0002
40 0.0728 -0.0002
50 0.0729 -0.0001
60 0.0729 -0.0001
70 0.0729 -0.0001
80 0.0729 -0.0001
90 0.0729 -0.0001

100 0.0730 -0.0000

*B(T) = f,(T) - f,.

of the roll process. The roll-frequency estimator is shifted down in frequency because of
the particular asymmetry in the tails of the transfer function; that is to say, more power
leaks in through the sidelobes of the spectral window from the transfer function below
resonance and from the negative-frequency image (the mirror image of the curves in Fig. 2)
than from the transfer function above resonance, where the power drops off more rapidly.

In Table 2 the power transfer function has been multiplied by wave-slope spectra
derived from Pierson-Moskowitz spectra [16] for windspeeds from 20 to 50 m/sec. The
bias is seen to be larger and shifted even more than before to lower values. There are
two causes for the increased bias. First, there is increased leakage through the sidelobes
of the spectral window. Second, there is a shift in the position of the peak that results
from the steepness in the spectrum of the driving force in the vicinity of resonance. Bias
resulting from the latter cause was investigated; the results are summarized in Table 3,
which shows the position of the resonant peak in the simulated roll spectrum when the
spectral window is the delta function, or identity operator under convolution. Compari-
son of Table 3 and Fig. 3 shows that the resonant frequency is shifted toward the peak
of the wave-slope spectrum, as one would expect. Also to be noted is the small contri-
bution to the bias from this cause, the major contributor being leakage through the side-
lobes of the spectral window.

The resonant peak of the transfer function is completely obliterated as a result of
the steepness of the wave-slope spectrum in the vicinity of resonance of windspeeds lower
than about 15 m/sec. This seems incongruous with the results discussed in the next sec-
tion, where well-defined resonant peaks obtained for windspeeds in this range. The Pierson-
Moskowitz spectra for low windspeeds have little energy at the frequencies corresponding
to roll resonance for most large ships. However, the oceans are normally characterized
by the presence of swell at these frequencies - swell that, as Kinsman [37] pointed out,
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Table 2 - Bias of Roll-Frequency
Estimator Resulting From Finite

Sample Length for Simulated
Rolling Among Waves* at a

Windspeed of 20 to 50 m/sec

T f0 (T) 1 B(T)t
(see) | (Hz) j (Hz)

10 0.0681 -0.0049
20 0.0697 -0.0033
30 0.0715 -0.0015
40 0.0719 -0.0011
50 0.0721 -0.0009
60 0.0723 -0.0007
70 0.0724 -0.0006
80 0.0725 -0.0005
90 0.0725 -0.0005

100 0.0726 -0.0004
00

*Pierson-Moskowitz spectrum [16].
tB(T) = f (T) - f
tSee Table 3.

Table 3 - Bias of Roll-Frequency
Estimator Resulting From Steepness

of Driving-Force Spectrum*

V I f(V) | B(V)
(m/sec) A(z) (Hz)

5 Resonant peak obliterated
10 Resonant peak obliterated
15 0.0733 0.0003
20 0.0731 0.0001
25 0.0731 0.0001
30 0.0730 0.0000
35 0.0730 0.0000
40 0.0730 0.0000
45 0.0730 0.0000
50 0.0730 0.0000

*Derived from Pierson-Moskowitz spectrum [16].
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travels with very little attenuation from the storm centers where it is generated to distant
points on the ocean's surface. In deducing the form of the Pierson-Moskowitz spectrum,
the authors first had to cull our all those wave-height spectra "contaminated" by swell.

APPLICATION OF METHOD TO SHIP ROLL HISTORY

Summary of Experimental Conditions

The ship motion histories treated in this study, with but one exception, were obtained
from the Airborne Radar Branch of the Naval Research Laboratory. The exception is the
motion history of the USS John F. Kennedy (CVA-67) which the author, assisted by F.
Fine, obtained with instrumentation on loan from the Airborne Radar Branch. Since, in
general, the data was obtained for some other study, there was no control over the experi-
mental conditions.

The instrumentation used to record the data, described in detail by Kremer et al. [38],
was connected to the appropriate synchro transmitters (roll, pitch, and heading), which in
turn were connected to the ship gyrocompass or fire-control stable element. Data was
sampled at a rate of 10 Hz and quantized to 12 bits. The data was recorded in computer-
compatible format as two 48-bit words per frame with 1200 frames per record. The format
is shown diagrammatically in Fig. 11. The frame marker used to identify the beginning of
the frame was to allow unscrambling of the data in those cases where the recorder lost
synchronism with the synchro-to-digital converters.

FRAME MARKER MISSION HEADING ROLL

lB I I I I I BITS 12 BITS | 12 BITS I

I II I I I I I I I I I I I I I I I I I I I I I

FIRST WORD

PITCH TIME SPEED

12 BITS 24 BITS 6 BIT I BIT

I Il1ll1l1ll IIhIIIIIIrIIItIIIIIIIIIIIIIIlII I II1 I

SECOND WORD

Fig. 11-Data format for recording ship motion
histories on magnetic tape

The ships whose roll histories were analyzed in this study are listed in Table 4 with their
size parameters. Measurements were made both en route and in the appropriate operating
areas off the coast of southern California and off Norfolk, Virginia. In most cases, the ships
executed a box pattern on courses 000, 090, 180, and 270 degrees True and on courses 045,
135, 225, and 315 degrees True. The ship steamed for about 15 min on each leg in turn
for a total of 4 hr, thereby executing each leg twice. Table 5 summarizes the conditions
of wind and sea that obtained during the recording of the 12-hr roll history for the USS
Providence that is analyzed in detail in this study.
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Table 4 - Summary of Ship-Size Parameters*

*Data from Ref. 39. Conversion factors: 1 ft = 0.3
tLength measurements rounded to the nearest foot.
*At waterline.
hAt full load.

3048 m; 1 ton = 907.18474 kg.

Table 5 - Synoptic Observations During Test of USS Providence*

Wind Swell

Time Direction Force Direction Period Height
(degrees True) (m/sec) (degrees True) (see) (i)

1000t 157 7.7 145 3 0.9
1100 170 9.8 145 3 0.9
1200 000 4.1 190 4 1.2
1300 000 4.1 275 4 1.2
1400 000 4.1 280 4 1.2
1500 052 2.6 310 5 1.5
1600 089 3.1 310 6 1.8
1700 128 2.6 295 6 1.8
1800 023 2.1 295 6 1.8

0300t 292 4.6 090 4 0.6
0400 292 4.6 090 4 0.6
0500 300 4.6 090 4 0.6
0600 320 4.6 090 4 0.6
0700 295 5.1 090 4 0.6

*Ship position
tFebruary 14,
tFebruary 16,

32.7 0N, 118.4 0 W.
1972.
1972.

39

Hull Lengtht Beamt l Draft Displacementil
Ship Name Type Number (ft) | (ft) (ft) (tons)

Kyes Destroyer DD-787 391 41 19 3,500
Shelton Destroyer DD-790 391 41 19 3,500
Buckley Destroyer DD-808 391 41 19 3,500
Hanson Destroyer DD-832 391 41 19 3,500
Parks Destroyer DD-884 391 41 19 3,500
Hull Destroyer DD-945 418 45 20 4,050
Towers Guided missile destroyer DDG-9 432 47 20 4,500
McCain Guided missile destroyer DDG-36 493 50 21 5,200
Dahigren Guided missile frigate DLG-12 513 53 25 5,800
Thomaston Dock landing ship LSD-28 510 84 19 11,270
Coronado Amphibious transport dock LPD-11 570 84 23 16,900
Providence Guided missile light cruiser CLG-6 610 66 25 14,600
Kennedy Attack aircraft carrier CVA-67 1048 130 36 87,000
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Choosing Parameters for the Analysis

In the analysis of ship motion histories we are free to vary the following parameters:

1. The sample length T

2. The sample rate (At)-l

3. The frequency spacing Af

4. The shape of the data window w(t)

5. The number rn of spectra that are averaged in determining a single estimate of
the roll frequency

6. The total length rnT of data entering into a determination of a single estimate
of the roll frequency

7. The method of averaging.

The choice of a sample rate is guided by the bandwidth of the data to be analyzed.
The classic sampling theorem of Oliver, Pierce, and Shannon [40] requires that a low-pass
signal be sampled at a rate at least twice that of the highest frequency present in order
to be able to recover the original signal from the samples. To sample at a lower rate would
result in distortion of the spectrum as a result of aliasing. In the present case, since we
are looking for behavior at a very low frequency, some aliasing in the spectrum could be
tolerated so long as the spectrum roll off were steep enough. Figure 12 shows the roll
spectrum for 4 hr of data from the USS Providence. The spectrum was obtained by
averaging 12 spectra (m = 12), each representing 20 min of data (T = 1200 sec). The
power density is down by 30 dB at 0.15 Hz, which implies that a sample rate as low as 0.25
Hz might have been used.

The choice of the frequency spacing Af is dictated by the fineness desired in the
measurement of the roll frequency and the variance in its distribution. The frequency
spacing is a simple function of the sample rate fs, which is equal to (At)-1 , and the size
n of the transform. The fineness in frequency can be obtained by adding zeros to the
data to fill out the input array of the transform. We have, then, for the frequency spacing

Af= f
n

Table 6 lists values of the frequency spacing Af as a function of some of the sample rates
available on the basis of a maximum sample rate of 10 Hz. The use of a low sample rate
eases the requirement on the size of the transform for a given frequency spacing. A lower
bound on the sample rate and therefore on the size of the transform would be of especial
interest in the design of a fast-Fourier-transform device for use aboard a vessel in measuring
roll frequency. In the laboratory it would represent a saving in computer time for cases
in which large amounts of data must be processed.
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Fig. 12-Power-spectrum estimate for the roll history
of the USS Providence (CLG-6) (T= 1200 sec, m = 12)

Table 6 - Dependence of the Frequency Spacing Af on Sample Rate fs
and Transform Size n

Transform Sample Rate fs (Hz)
Size

n 10 5 2 1 0.5 0.25

256 0.0391 0.0195 0.0078 0.0039 0.0020 0.0010
512 0.0195 0.0098 0.0039 0.0020 0.0010 0.0005

1024 0.0098 0.0049 0.0020 0.0010 0.0005 0.0002
2048 0.0049 0.0024 0.0010 0.0005 0.0002 0.0001
4096 0.0024 0.0012 0.0005 0.0002 0.0001
8192 0.0012 0.0006 0.0002 0.0001

Of the several parameters, the sample length is perhaps most critical to the analysis.
For reasons of economy, the sample length should be small. On the other hand. resolu-
tion of low-frequency components in the spectrum demands a large sample length. Closely
tied to the sample length is the number of spectra that are averaged and therefore the
total length of data that enters into the determination of a single estimate of the roll fre-
quency.

An attempt to confirm the optimum relationship among these three parameters is
shown in Tables 7 and 8, which present a part of the results of a parametric analysis.
Table 7 shows the results of averaging m spectra each computed from T seconds of data.
Shown is the mean 4 of the roll-frequency estimates thus determined, the sample standard
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Table 7 - Dependence of the Mean AP and the Standard
Deviation SM of the Roll-Frequency Estimates on the Number m

of Spectra Averaged*

Number of rn 11 1 2
ASvecrag (se m (Hz) (Hz) | (Hz)

144 100 1 0.0730 0.0071 0.0071
72 200 2 0.0732 0.0046 0.0050
36 400 4 0.0735 0.0033 0.0036
18 800 8 0.0731 0.0016 0.0025
9 1600 16 0.0731 0.0012 0.0018
6 2400 24 0.0730 0.0011 0.0014

*Sample length T = 100 sec.

Table 8 - Dependence of the mean
fp and the Standard Deviation Sm of
the Roll-Frequency Estimates on the

Sample Length T*

T rn JPS
(sec) (Hz) (Hz)

2400 1 0.0723 0.0017
1200 2 0.0729 0.0018

800 3 0.0725 0.0018
600 4 0.0734 0.0016
480 5 0.0732 0.0016
400 6 0.0725 0.0017
300 8 0.0728 0.0022
240 10 0.0724 0.0014
200 12 0.0730 0.0017
160 15 0.0729 0.0013
120 20 0.0728 0.0016
100 24 0.0730 0.0011
80 30 0.0732 0.0015
60 40 0.0734 0.0014
50 48 0.0732 0.0017
40 60 0.0741 0.0012
30 80 0.0737 0.0015

*Total data length inT = 2400 sec.
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deviation Sm. and the sample standard deviation with no averaging, S1, reduced by a factor
Mr1 /2 . The latter assumes that S1 is the standard deviation of the population so that S1 m-1 /2
gives the theoretical deviation of the sample mean of the roll-frequency estimates themselves,
the mean in this case being the roll-frequency estimate f,, determined from an average of m
spectra.

A logical question to ask at this point is whether the reduction so achieved results from
the averaging or from the increased amount of data mT that entered into the determination
of a single estimate of the roll frequency. To investigate this the total length mT of data
was fixed while the sample length T and the number m of spectra averaged were varied.
From Table 8 the deviation is seen to vary little, which suggests that the controlling parame-
ter is the amount of data that enters into the determination of a single estimate of the roll
frequency. The results of a series of such measurements for a variety of data lengths mT
are shown in Fig. 13, where the mean deviation Sm is plotted as a function of the total data
length mT. The equation fitted to the data, applicable over the range 30 < T, is seen to be
of the same form as that for the reduction in the deviation of the sample mean. It is neces-
sary to restrict the. range of T since for T < 30 sec there is insufficient resolution for the
measurement accuracy desired.
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Fig. 13 - Mean standard deviation of roll-frequency
estimates for different sample lengths vs total length
of data per estimate

On examining Table 8 more closely one notices a global minimum in the deviation for
a sample length T of 100 sec. In fact, this minimum was in evidence at other values of
mT, which'suggests that, given a length of data, the optimum processing requires that the
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record be subdivided into 100-sec samples without regard to the number m of spectra to
be averaged. The reason for this is to be found by examining the autocorrelation function
for the roll history, Fig. 1. Immediately obvious is the almost total decorrelation for a lag
of 100 sec. For a sample length less than this the samples would not be independent, in
which case the reduction in the variance that results from averaging a given number of
spectra would not be expected to be as great. Taking a sample length equal to the decor-
relation time is in some respects equivalent to matched filtering or to enhancement of the
signal-to-noise ratio by coherent integration.

The equivalence to matched filtering can be appreciated by considering that the decor-
relation time is approximately the reciprocal of the resonant bandwidth. To choose a rec-
tangular data window with a length equal to the decorrelation time is to choose a spectral
window with a bandwidth comparable to the bandwidth of the resonant peak. Such a
matching of the functions being cross correlated (the convolution of even functions) as a
consequence of transforming should result in maximum response of the "filter" at the
frequency of resonance. If some weighting other than rectangular were used, leading to
spectral windows with larger bandwidths, the truncation length would have to increase to
maintain bandwidth equality.

The equivalence to coherent integration can be understood by considering that, because
of the coherence of the signal, signal energy builds up in the output of the filter while the
noise energy, through destructive interference, remains at about the same level. As we
include more and more cycles of the coherent signal, the peak in the spectrum correspond-
ing to the center frequency of the oscillations grows higher and narrower. When the sam-
ple length exceeds the coherence length, the improvement ceases, and the single peak may
split into multiple peaks, as seen in the closely spaced peaks in the spectrum of Fig. 14,
obtained from 200 sec of data. The two peaks of almost equal amplitude may represent
two frequency components present simultaneously or the frequencies of adjacent groups
of oscillations. In the former case, a smaller sample length will result in less resolution-
as shown in the spectrum of Fig. 15, obtained from 100 sec of data-thereby effectively
averaging the two spectral lines and simultaneously increasing the number of spectra availa-
ble for averaging. In the other case, where the two peaks represent the frequencies of
adjacent groups of oscillations, halving the sample length could result in measuring each
peak separately, with the result that both would be accounted for and twice as many spec-
tra would be available for averaging.

It is interesting to note that the decorrelation time of 100 sec, which spans about
seven cycles of the roll history, appears to correlate with the coherence length of the fre-
quency component in the sea that is driving the ship in the roll plane. Measurements by
Crombie et al. [41] of high-frequency groundwave backscatter from the sea indicate coher-
ence lengths of 3.5 to 9.4 cycles for waves with a period equal to that of the ship's roll.

Since ship roll histories are signallike in character, spectral windows find use primarily
in reducing errors in the measurement resulting from leakage through their sidelobes. An
interesting problem arises in the spectral analysis of ship roll histories where we are inter-
ested in the frequency of a strong spectral line near f = 0. For small sample lengths, leak-
age from the negative-frequency image of the spectral peak can introduce significant error
in estimating the frequency of the peak. Aspects of this problem are treated on pp. (35 - 38)
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Fig. 14- Power spectrum of the ship roll history of
the USS Providence, February 16, 1972 (T = 200 seC)

-20

-30

roEd
L)

al

-40

-50

-60

.05 .10 .1i

FREQUENCY (HERTZ)

Fig. 15 - Power spectrum of the ship roll history of
the USS Providence, February 16, 1972 (T = 100 seC)
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and in Appendix B. The problem is minimized here since an optimum sample length equal
to the decorrelation time of the roll record, chosen for other reasons, places the sample
length in a regime (i.e., T/TO > 6, see Appendix B) where the error (Fig. A2 is less than 1%.
For the smaller sample lengths in Table 8, however, the behavior depicted by Figs. A2
and A3 explains the source of some of the scatter (larger deviation) in the measurements
since for those data the truncation length was fixed while the phase Was allowed to vary
randomly. This also explains why the deviation in Table 8 oscillates with sample length
for the smaller sample lengths.

The last factor to be considered that affects the processing of the data is the method
of averaging. Do we average normalized or unnormalized power spectra, contiguous or
noncontiguous samples? There are reasons that suggest that each technique has merit.
For example, we might suppose from an examination of a roll history that the largest
oscillations are large because they are closer in frequency to the natural roll frequency
we are endeavoring to measure, as suggested by Vossers [2] and Williams [8], and that
such oscillations should receive greater weight in the averaging process. This will be the
case if we average power spectra. On the other hand, if we average normalized power
spectra (normalized to the total power in the spectrum), we give equal weight to each
member of the ensemble over which the average is being taken. This is to be preferred
if the amplitude of the oscillations is not a measure of their proximity to resonance. A
comparison of the two methods of averaging is summarized in Table 9, where the sample
standard deviation of the roll-frequency estimates from averaging normalized power spectra,
S , is uniformly smaller than the sample standard deviation from averaging power spectra, S2
and where S1 m-1 /2 gives the theoretical reduction in the standard deviation that results
from averaging roll-frequency estimates for a population having the standard deviation S1.
This suggests that the larger oscillations in the roll history do not signify proximity to
resonance, as has been supposed, but have some other cause, such as coherence of the
wave train driving the ship in roll.

Table 9 - Dependence of the Standard Deviation
SM of the Roll-Frequency Estimates on the Method

of Averaging*

Number of S1J 2 t S SM-1/2
Average m (Hz) mz (Hz)
Spectra ____ (z H) (z

144 1 0.0071 0.0071 0.0071
72 2 0.0046 0.0047 0.0050
36 4 0.0033 0.0035 0.0036
18 8 0.0016 0.0021 0.0025
9 16 0.0012 0.0014 0.0018
6 24 0.0011 0.0015 0.0014

*Sample length T = 100 sec.
tValues for S' from averaging normalized power spectra.
*Values for S2 from averaging power spectra.
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The consideration of averaging spectra computed from contiguous or noncontiguous
segments of the roll history arose as the result of processing a 4-hr data tape from the
USS Providence (CLG-6) recorded February 14, 1972. Conditions were such that the ship
was driven well off resonance (at about 0.1000 Hz compared to a resonant frequency of
0.0730 Hz) for a period of about 20 min. Averaging spectra from contiguous segments
of the roll history gave rise to some estimates of the roll frequency that were obviously
too high. Moreover, the bad estimate persisted in spite of an increase in the number m
of spectra averaged. The occurrence of such extended periods of rolling far from resonance
has been noted.t To avoid obtaining a bad estimate of the roll frequency under such con-
ditions we can separate our measurements by a time interval large enough to span the inter-
val of bad data. This was done for the data in question, where the interval between mea-
surements was 240/m min. For m = 8 the interval between measurements was 30 min,
which means that one bad measurement was averaged with seven other measurements-a
procedure that effectively discriminated against such an abnormality in the record.

The reason for the occurrence of such anomalies is not clear. The discussion of bias
on pp. 35 - 38 relating to a shift in the frequency of the resonant peak resulting from the
steepness of the wave-slope spectrum in the vicinity of resonance for low wind-speeds may
be pertinent. If, for example, the local winds were below about 15 m/sec, giving rise to
a wave-slope spectrum with a peak substantially higher in frequency than the roll-resonant
frequency, and if the swell were unidirectional so that when heading into or away from the
swell the ship were driven in roll by something approaching a Pierson-Moskowitz wave-slope
spectrum [16] for low windspeeds, such a condition could obtain. Unfortunately, not
enough information about the test conditions was available for making such a judgment.
Two pieces of information are available, however, that support the plausibility of the argu-
ment above. Motion pictures of the sea taken in the operating area on the day for which
the roll history is available show that the winds were very light, as indicated in Table 5,
and show well-defined swell that may indeed have been unidirectional. A discrepancy
between the times of observation in the table and the times recorded with the roll history
would not allow correlation of the behavior with the angle between the ship's heading
and the swell direction. A correlation between the occurrence of the high estimates of
the roll frequency and the ship's heading did reveal, however, that the high estimates
occurred on headings about 180 degrees apart, or on opposite sides of the box pattern
being executed. Similar behavior was noted by Norrby and Engvall [13], who indicated
that, when the vessel was sailing against the waves, the rolling and pitching were coupled,
rendering the roll period small.

Sampling Distribution of Roll-Frequency Estimates

We have already seen (pp. 25 - 28) that the power-spectral estimates for white noise
are distributed as chi-squared variates with two degrees of freedom and that averaging m
such variates results in the average spectral estimates being distributed as chi-squared with
2 m degrees of freedom. We saw also that extension of these results could be made to
an arbitrary stochastic process providing that the sample length was large enough to make
the width of the spectral window small compared to the structure of the power spectrum
of the process or that the power spectrum of the process was smooth relative to the spec-
tral window. These assumptions were made on pp. 30 - 35 in deriving for a known power

tA.E. Baitis, Naval Ship Research and Development Center, Bethesda, Md., private communcation, 1974.

47



WILSON G. REID

spectrum the probability density function for the estimates of the resonant frequency given
a finite number m of spectra from the ensemble so that the independent spectral estimates
were distributed as chi squared with 2 m degrees of freedom. We saw there that the form
of the probability distribution in the absence of bias (due to leakage through the sidelobes
of the spectral window introduced by the finiteness of the sample length) was Gaussian.
It was noted also that, although the probability density function for the estimate of the
resonant frequency was dependent on the shape of the power spectrum of the process,
only the spectrum in the vicinity of resonance contributed significantly to the probability.
Hence, even for the case of two filters in tandem, one having as a transfer function the
square root of the wave-slope spectrum for a Pierson-Moskowitz sea and the other having
the transfer function for the ship in the roll plane, the probability density function for
the estimates of the resonant frequency was Gaussian.

The result of processing one 4-hr roll history for the USS Providence are shown
in the form of cummulative distribution functions plotted on normal probability paper.
In Figs. 16 through 20 T is the sample length (seconds) from which a single sample
spectrum was calculated and m is the number of sample spectra averaged to give a single
estimate of the roll frequency plotted on these curves. Three methods of averaging the
m spectra were used. In methods 1 and 2 normalized and unnormalized power spectra,
respectively, were averaged; in both cases the spectra were computed from contiguous
segments of the roll history. In method 7 normalized power spectra computed from non-
contiguous segments of the roll history were averaged.

Figure 16 shows the cumulative distribution function for the global maxima from 144
individual power spectra, each computed from 100 sec of data. The sampling distribution
in the absence of averaging is decidedly not Gaussian. The reduction in the variance and
the tendency to normality with averaging are shown in Fig. 17, where normalized spectra
from noncontiguous segments of the record were averaged. Figures 18 and 19 are included
to show graphically the comparison between averaging unnormalized and normalized power
spectra, in these two cases obtained from contiguous segments of the record. If the ampli-
tude of the roll were a measure of the proximity to resonance, then we should have expected
to see the smaller variance in Fig. 18, where the greater power in the larger oscillations near
resonance would dominate in the averaging. However, this is seen not to be the case. Figure
20 is the sampling distribution for 12 hr of data with the measurements separated by 30 min.

It should be noted that the standard deviations are larger for the sampling distributions
determined from actual data than those predicted on pp. 27 - 31. The relationship between
the standard deviation for the fractional error e and that for the estimated roll frequency
?, can be shown to be

aSO(m) = fpae(m).

For a natural roll frequency f4o of 0.0730 Hz and a standard deviation Mm(r) for the frac-
tional error for m = 8 equal to 0.0095, the standard deviation af (m) for the roll-frequency
estimate would be 0.0007 Hz. Figure 20 shows the standard deviation for m = 8 to be
0.0025 Hz.
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This discrepancy is not surprising since in our earlier discussion on pp. 27 - 31 we assumed
a roll-damping coefficient of 0.032 and assumed that the spectrum of the driving force dia
not alter the bandwidth of the resonant peak, whereas in practice neither of these conditions
may have obtained. There are several possible causes of this variability: a differing doppler
shift in the spectrum of the driving force for each of the eight courses on which the ship
steamed; nonstationarity of the sea over the period during which the data was gathered;
underestimation of the roll-damping coefficient, which would have the effect of reducing
the bandwidth of the resonant peak in the power spectrum assumed in the derivation and
therefore the variance of the roll-frequency estimates; and broadening of the resonant peak
at sea resulting from the steepness in the spectrum of the driving force in the vicinity of
resonance causing an increase in the variance of the sampling distribution.

Comparison of the estimates of the natural roll frequency in Fig. 20 with the value
obtained from inclining experiments in still water shows a close correlation. The natural
roll period from inclining experiments [42] is found to be 13 to 14 sec (frequency 0.0714
to 0.0769 Hz), whereas the mean of the estimates of the natural roll frequency in Fig. 20
is 0.0721 Hz; this shows that the results of measurements made in a confused sea are in
good agreement with those made in still water. In both cases the spread in the values is
comparable, but it appears that measurement of the natural roll frequency by spectral
analysis of the roll history, as described in this study, has the potential for significantly
improving the accuracy of such measurements.

The method that has been employed until now for ships of the U.S. Navy consists
of sallying the ship by hauling up on one side of the ship at dockside with a crane in
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synchronism with the expected natural roll frequency until the oscillations are built up to
a measurable level. Several observers with stopwatches then time the decaying oscillations.
Not only is measurement error significant with this method but the tests are often made
while the ship is in the yard completing an overhaul and not in its normal operating con-
dition. A test that could be made with the ship fully loaded and in operating condition
at sea would offer distinct advantages. The test could be as simple as recording the roll
history while the ship is at sea for later processing ashore. The equipment required would
therefore be minimal. Since time is likely not to be urgent for such an application, the
large amount of data that could be gathered and processed could lead to very accurate
measurements. Processing of the same 12 hr of data for the USS Providence as shown in
Fig. 20 but for m = 36 (averaging thirty-six 100-sec sample spectra spaced 20 min apart)
so that each measurement represents 1 hr of data yields a mean value for the estimate of
the natural roll frequency of 0.0725 Hz with a standard deviation of 0.0008 Hz.

Correlation of Roll Frequency With Ship Size

Figures 21 through 24 show the roll frequency for 13 ships plotted as a function of
overall length, beam at the waterline, maximum navigational draft, and full-load displace-
ment. To assess the degree of correlation with each of these parameters a least-squares
regression line was fitted to the data and the rms error was computed.
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Fig. 21 - Correlation of roll frequency with
ship length (1 ft = 0.3048 m)
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The algorithm for selecting the roll frequency for each of the 13 ships made use of
no a priori knowledge about the size of the vessel or its probable roll frequency but
assumed only that the roll frequency lay in the band of frequencies from 0.0350 to
0.1250 Hz, which spans the range of roll frequencies from large aircraft carriers to small
destroyers.

Interestingly, the best correlation of the natural roll frequency is with the length of
the vessel, and not with the beam or draft, which we would suppose to be more strongly
correlated with the radius of gyration, the metacentric height, and the righting arm. The
dependence of the natural roll frequency on these parameters can be seen by considering
the case of unresisted roll in still water. For these conditions Eq. (1) reduces to the fol-
lowing simple form:

-2 + C° °=0. (66)
dt2

From first principles, if it is assumed that the axis of roll passes through the center of
gravity G, the equation of motion may be written

d2 1
I- + M = 0 (67)

dt 2

where I is the mass moment of inertia about the roll axis through the center of gravity
and M is the righting moment. The moment of inertia may be written

I Ak2 (68)

g
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where A is the displacement of the vessel, k is the radius of gyration of the mass of the ship
about the roll axis, and g is the acceleration due to gravity. From Fig. B3 in Appendix B,
we can see that for small angles of inclination the righting moment may be written

M =AGZ

= AGM sin (p

= AGM Ap (69)

where GZ is the righting arm and GM is the metacentric height. Substitution of Eqs. (68)
and (69) into Eq. (67) gives

d2(p GM
- + g P = 0. (70)
dt 2 k2

A comparison of Eqs. (66) and (70) shows that the radian frequency for unresisted roll in
still water is given in terms of the parameters of static stability as

2 gGM
r k2

Making use of the relation Wr = 27rfr and the expression for the natural roll frequency in
terms of the frequency of unresisted roll in still water, Eq. (3), we obtain

-so = (g2 Mk) (1 - K2)1/2 . (71)

The close correlation between the natural roll frequency and the length, which appears
nowhere in the above equations, is probably attributable to the existence of an "aspect"
ratio among the size parameters of length, beam, draft, and displacement. A similar corre-
lation for the still-water roll period for British warships was noted by Williams [8]. Assum-
ing similarity of form (geometrical) and weight distribution, he gave the empirical relation as

T cx Q 1/2 (72)

where Tp is the natural period of roll and £ is any linear dimension (e.g., length, beam, or
draft). The symbol a indicates proportionality. Correlation with displacement A was given
as

Tp cc A1 / 6 . (73)

It is interesting to note that the correlation due to Williams [8] is not linear with linear
dimension; the natural roll period varies as the square root of the linear dimension. The cor-
relations shown in Figs. 21 through 24 suffer from a lack of data for larger ships, the USS
John F. Kennedy being well removed in size from all the others for which data is plotted.
If data for ships intermediate in size between the USS Providence and the USS John F.
Kennedy were plotted, they might be expected to fall below the least-squares regression
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line in Fig. 21, in which case Williams' [8] result would appear to apply. It is also inter-
esting to observe that the data for the USS Thomaston (LSD-28) and the USS Coronado
(LPD-11) amphibious ships differing in geometrical form from the others, which are ships
of the line, fall close to the regression line in Figs. 21 and 23; this indicates close correla-
tion of their natural roll periods with length and draft. Figures 22 and 24 indicate that the
data for these same two ships may well be biasing the correlation in favor of a linear rela-
tionship since these ships fall in the middle of the range of beam and displacement and
the data lies above the regression line.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The optimum processing of a finite length of roll history (optimum in the sense of
minimum variance in the estimate of the natural roll frequency) consists of (a) partition-
ing the record into m segments T seconds long, T being the decorrelation time of the roll
history; (b) weighting the data with a rectangular data window for optimum bandwidth
of the spectral window; (c) adding zeros to each segment of the weighted data before
transforming to achieve the desired fineness in frequency; (d) computing the squared modu-
lus of the Fourier transform of the weighted data with zeros added; (e) normalizing the
resulting spectrum to unity total power; (f) averaging the m normalized sample power
spectra to obtain a smoothed estimate of the roll spectrum; (g) determining the frequency
of the global maximum of the roll spectrum; (h) correcting this estimate of the resonant
frequency for the bias introduced by the steepness of the driving-force spectrum in the
vicinity of resonance if this information is available; and (i) computing the estimate of
the natural roll frequency from a deterministic relation involving the estimated resonant
frequency and the coefficient of roll damping if the latter is large enough to necessitate
such a correction.

Where the amount of data is not so limited and there is the opportunity for designing
the experiment, the optimum procedure is to average sample spectra computed from non-
contiguous portions of the roll history separated by 30 min or more and representing a
diversity of ship headings.

Although it is true that a ship, which is a narrowband resonant system in the roll
plane, is not likely to be driven to large angles of roll at frequencies far from resonance,
it is not true that the size of the oscillations is necessarily a measure of proximity to
resonance. This was discovered by a comparison of averaging techniques. It was argued
that if large-amplitude rolling obtained by virtue of proximity to resonance, then the
heavier weighting given to spectra from such portions of the record by averaging unnor-
malized power spectra would lead to a smaller variance in the measurement. This was
not the case, but averaging normalized power spectra (thereby giving equal weight to each
portion of the roll record regardless of the amplitude of the oscillations) led to the smaller
variance.

The probability distribution for the estimates of the natural roll frequency determined
by the optimum processing scheme described above was derived and found to be Gaussian.
This was confirmed by measurements of 12 hr of roll history from the USS Providence.
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The Pierson-Moskowitz spectrum [16], as a model for the sea, indicates accurate
measurement of the natural roll frequency for windspeeds above 20 m/sec for which the
resonant frequency is on the relatively flat portion of the spectrum. For lower windspeeds
the Pierson-Moskowitz spectrum is inadequate as a model since there is insufficient energy
in this spectrum in the vicinity of roll resonance. In practice, the presence of swell result-
ing from stronger wind systems over other portions of the ocean overcomes this deficiency
so that a ship manages to roll most of the time.

Correlation of the natural roll frequency with ship-size parameters (length in particular)
for American warships suggests that measurements of the natural roll frequency, if they
could be made from radar-cross-section histories of ship targets, be used to classify radar
targets in a remote-sensing system.

Recommendations for Future Research

In the classic work in modern times on ship motions at sea, St. Denis and Pierson [6]
made the powerful assumption of linearity that provided new impetus to the study of the
interaction between ship and sea. The validity of the linearity assumption was confirmed
by Lalangas [19] for the regimes of small roll angle or high ship speed. For most of the
ships whose behavior is discussed in this report the roll angles were small, so that the assump-
tion of linearity could be made. The assumption of uncoupled motions, also made by St.
Denis and Pierson, neglected the coupling of pitch, heave, and roll treated by Nayfeh et al.
[43] and the coupling of the lateral motions of roll, sway, and yaw treated by Tasai [44].
With the development of techniques to handle nonlinear, coupled motions, the analysis
reported here might be extended to such cases.

The point was made on pp. 35 - 36 that for low windspeeds the steepness in the spectrum
of the driving force in the vicinity of resonance (based on a Pierson-Moskowitz model [16] for
a fully developed sea) was so large as to completely obliterate the resonant peak in the roll
spectrum. On the other hand, as noted on pp. 46 - 47, the USS Providence (CLG-6) was excited
into roll resonance although the local windspeed was only about 5 m/sec. The explanation, as
as given on pp. 36 - 38, was that the Pierson-Moskowitz spectrum is an equilibrium condi-
tion that rarely obtains except in certain regions such as the tropics, where the trade winds
have both the fetch and duration to cause the sea to attain equilibrium. Moreover, this
model for the sea does not take into account the presence of swell propagating into the
area from distant storms. Kinsman [37] indicates the frequency of the swell to be below
0.1 Hz, which is precisely the region of roll resonance for most large ships.

Clearly, what is needed is a statistical description of the sea in terms of probability
distributions for the spectral estimates where the variability reflects the variation in the
sea with such parameters as windspeed, time of day, and season of the year-and such other
parameters as may be correlated with the general meteorological conditions that affect the
spectrum. According to L. Moskowitz,t such a description has not even been attempted,
although wave-height records covering the period from 1952 to the present are available
from the Institute of Ocean Studies (formerly the National Institute of Oceanography)
for English weather ships located at stations India (590N, 190W) and Juliet (52.5 0N, 200W)

t Private communication to the author, 1975.
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in the North Atlantic Ocean. It might prove interesting to derive empirically the means
and standard deviations of the spectral estimates for the wave-height records from these
two weather stations and to attempt to identify trends (e.g., daily, weekly, monthly, quar-
terly, and yearly).

The results of such a study might indicate how the estimate of the natural roll fre-
quency might be corrected for bias due to the steepness in the spectrum of the driving
force in the vicinity of resonance for cases of low windspeed.

An assumption made on pp. 15 - 16 to render the mathematics more tractable was that the
motion of the ship through the sea would not alter appreciably the spectrum ot the driving
force. This assumption obviated the need for a rather tedious transformation to an "encoun-
ter" spectrum. Neither this nor the assumption of a frequency-independent spreading func-
tion also made on p. 14 should affect the smoothness of the spectrum driving the ship in
roll. A more rigorous rendering of the mathematics in these two cases would be useful
in confirming the accuracy of the simpler treatment considered here.

Another area in which research might be fruitful is an extension of the spectral analysis
techniques, applied here to ship roll histories, to ship radar-cross-section histories since the
correlation of the natural roll frequency with ship-size parameters suggests that the natural
roll frequency might serve to classify a ship target as to size. A modest effort could be
made by a computer simulation of the radar-cross-section history using as inputs to the
program the appropriate radar-cross-section patterns for the ship and actual yaw, roll, and
pitch histories. Application of the technique described above to the simulated radar-cross-
section histories and simultaneously to the roll histories should provide a measure of how
successfully the natural roll frequency can be extracted from radar data.
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Appendix A

ERROR IN ESTIMATING THE FREQUENCY OF A
TRUNCATED SINUSOID

The problem of determining the frequency of a severely truncated sinusoid occurs
quite often in the case of geophysical phenomena where the periods may be so long as
to preclude observation of a number of cycles. The effect on the Fourier transform of
severely truncating a sinusoid is to shift the frequency of the spectral maximum, an effect
observed by Toman.t The explanation of this effect was provided by Jacksont and is
reviewed here to help explain an oscillation in the variance of the roll-frequency estimator
for short sample lengths.

The behavior of the error can be understood by considering the truncated sinusoid
shown in Fig. Ala, where To is the period of the sinusoid, r is the delay from the start
of the sinusoid to the first positive peak, and T is the truncation length of the sinusoid.
The function s(t) can be written

s(t) = rect [t - (T/2] cos (27r t +) (Al)

where the phase angle <p = 21rT/T0 and where rect (t) = 1 for Itl < 1/2 and is zero other-
wise. By Fourier transformation we obtain the spectrum

S~eoeep)=-r ei~~l+ e)a F.nc2 e)aez~(7r + 'p) + sinc cteei(lra + fP)] A
S(e6^,P) =O oae-h(1 Lslc( 2 + (A2)

where af = T/TO, e = (f - fo)/fo, and fo = 1/To. The sinc function is given by sinc(x)
(sin irx)/7rx. The notation for the spectrum S(e,^ep) differs here from that used in the
body of the dissertation, the meaning here being that the spectrum is a function of all
three parameters shown.

Figure Alb, a plot of the magnitude of the spectrum for a = 2 and ep = 0, shows
the sinc-function spectral window replicated at fo. It can readily be appreciated that add-
ing the sidelobe from the spectral window centered at fo to the mainlobe at -40 will result
in a shift in the location of the resulting peak where the slope of the sidelobe at -fo is
not zero. A similar argument holds of course for the peak at fo.

With the formulation of Eq. (A2) we can plot the fractional error e in the position
of the peak of the spectrum as the phase sp and the normalized truncation length ae are
varied. Figures A2 and A3 show this dependence.

tK. Toman, "The Spectral Shift of Truncated Sinusoids," J. Geophys. Res. 70, 1749 (1965).
*P.L. Jackson, "Truncation and Phase Relationships of Sinusoids," J. Geophys. Res. 72, 1400 (1967).
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Fig. A3- Negative error in estimate of the frequency of a truncated sinusoid
(mean retained)

could be reduced by choosing a spectral window with lower sidelobes. If the smaller band-
width of the sinc-function spectral window cannot be compromised, it might then be advis-
able to choose, as nearly as one can, the phase and truncation length so as to minimize the
error, for example,

i = 0,

= 1.25 + - d n = 1,2,3,...,
2'

although the algorithm for such a computation would be more complex. Fourth, since the
error in this very simple model (i.e., a process spectrum consisting of a single spectral line
and its image at negative frequency) arises from leakage due to the negative-frequency image,
we could avoid the problem altogether by utilizing the analytic signal of Gabor.*

Since it is customary in spectral analysis to remove the mean from a sample of data
before obtaining the spectrum, it would be of interest to know the effect on the error dis-
cussed above of removing the mean value of the sample before transforming. Removal of
the sample mean leads to the spectrum

S'(e,Q,ep) = S(e,a,p) - U0T0c sinc(1 + e)ae-i7r(l + e)a (A3)

*D. Gabor, "Theory of Communications," J. 1EE (London) 93 (3), 429-457 (1946).
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where the prime on the spectrum indicates that the mean has been removed and S is the
mean of the truncated sinusoid, given by

s = 2 -[sin(27ra + Up) - sin up]. (A4)
rira

The fractional error in this case is shown plotted in Figs. A4 and AS.
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Fig. A4 - Positive error in estimate of the frequency of a truncated sinusoid
(mean removed)
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Fig. A5 - Negative error in estimate of the frequency of a truncated sinusoid
(mean removed)
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Appendix B

DEFINITION OF TERMS RELEVANT TO SHIP STABILITY

Naval Architecture

The motion of a ship in a seaway is characterized by six degrees of freedom: three
translational (surge, sway, and heave) and three rotational (roll, pitch, and yaw). The
relationship between the various component motions is shown in Fig. B1. Roll is the
oscillatory motion of the ship in the sea, whereas heel is a temporary transverse inclina-
tion resulting from a high-speed turn or the influence of a strong wind. List is a more
or less permanent condition of transverse inclination, such as might arise from uneven
loading. Synchronous rolling, or the condition of synchronism, obtains when the apparent
frequency of the swell (i.e., the frequency of that component normal to the roll axis) is
very near the natural roll, or resonant, frequency of the ship. Resisted or unresisted roll-
ing refers to the presence or absence of damping. Bilge keels are added to increase roll
damping. They are longitudinal finlike structures protruding from the turn-of-the-bilge,
or the point of maximum curvature of the underwater portion of the hull.

HEAVE

YAW

SWAY

PITCH

ROLL

SURGE

Fig. B1 - Relationship among the components
of ship motion

Figure B2 shows the midship section, a plane normal to the longitudinal centerline
plane and waterlines, the waterlines being planes (or their intersection with the hull) par-
allel to the base plane at the top of the flat keel. Shown in the figure are several angles
of heel. For each angle of heel, or inclination, the shape of the displaced volume is dif-
ferent. The geometric center of the displaced volume is the center of buoyancy B through
which the hydrostatic pressure on the immersed surface (equal to the weight of water
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Fig. B2 - Transverse section showing parameters of static stability

displaced) acts vertically upward. The successive positions of the center of buoyancy for
different angles of inclination describe a curve known as the locus of the center of buoy-
ancy. For each point of this curve a center of curvature, or metacenter m, may be found.
The locus of these metacenters is called the metacentric. For small angles of inclination,
usually less than about 10 degrees, there is little change in the position of these centers of
curvature. Hence, for small angles of inclination, these centers are assumed to be fixed in
a position M called the metacenter.

Oceanography

The term "sea," as used by oceanographers, refers to waves generated or sustained by
winds within their fetch, or distance over which the wind is interacting with the sea, whereas
"swell" refers to waves that have traveled out of the area in which they were generated.
Beam seas are wind-generated waves whose direction is normal to the roll axis, whereas a
confused sea is a rough sea (waves 1.5 to 2.5 m (5 to 8 ft) high produced by winds of
about 8 m/sec) where the direction and period of the sea and/or swell are indeterminate.
A fully developed sea is one that has reached equilibrium after a steady wind has blown
for a sufficiently long time over a sufficiently long fetch. Gravity waves are waves whose
celerity (velocity of propagation) is controlled primarily by gravity, as opposed to capillary
waves, whose celerity is controlled by the surface tension of the water in which they are
traveling. Water waves of length greater than about 51 mm (2 in.) are considered gravity
waves. A regular wave is one with a sinusoidal profile as opposed to a trochoidal profile.
The wave normal is the local perpendicular to the wave surface, and the wave-normal angle
is the angle between the wave normal and the local vertical. The term "encounter" refers
to the relative motion between the sea and a ship under way in the sea. Hence the fre-
quency of encounter is the frequency of the sea as viewed from a ship moving through the
sea, and not the frequency of the sea relative to an earth-centered, or absolute, coordinate
system. Figure B3 shows a typical directional frequency spectrum.
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I I

Fig. B3 -Typical directional sea spectrum
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